Development of a physiologically based pharmacokinetic model for levetiracetam in patients with renal impairment to guide dose adjustment based on steady-state peak/trough concentrations.
Rongrong Wang, Tianlin Wang, Xueliang Han, Mengli Chen, Shu Li
{"title":"Development of a physiologically based pharmacokinetic model for levetiracetam in patients with renal impairment to guide dose adjustment based on steady-state peak/trough concentrations.","authors":"Rongrong Wang, Tianlin Wang, Xueliang Han, Mengli Chen, Shu Li","doi":"10.1080/00498254.2024.2317888","DOIUrl":null,"url":null,"abstract":"<p><p>Levetiracetam may cause acute renal failure and myoclonic encephalopathy at high plasma levels, particularly in patients with renal impairment. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict levetiracetam pharmacokinetics in Chinese adults with epilepsy and renal impairment and define appropriate levetiracetam dosing regimen.PBPK models for healthy subjects and epilepsy patients with renal impairment were developed, validated, and adapted. Furthermore, we predicted the steady-state trough and peak concentrations of levetiracetam in patients with renal impairment using the final PBPK model, thereby recommending appropriate levetiracetam dosing regimens for different renal function stages. The predicted maximum plasma concentration (Cmax), time to maximum concentration (Tmax), area under the plasma concentration-time curve (AUC) were in agreement (0.8 ≤ fold error ≤ 1.2) with the observed, and the fold error of the trough concentrations in end-stage renal disease (ESRD) was 0.77 - 1.22. The prediction simulations indicated that the recommended doses of 1000, 750, 500, and 500 mg twice daily for epilepsy patients with mild, moderate, severe renal impairment, and ESRD, respectively, were sufficient to achieve the target plasma concentration of levetiracetam.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"116-123"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2317888","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Levetiracetam may cause acute renal failure and myoclonic encephalopathy at high plasma levels, particularly in patients with renal impairment. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict levetiracetam pharmacokinetics in Chinese adults with epilepsy and renal impairment and define appropriate levetiracetam dosing regimen.PBPK models for healthy subjects and epilepsy patients with renal impairment were developed, validated, and adapted. Furthermore, we predicted the steady-state trough and peak concentrations of levetiracetam in patients with renal impairment using the final PBPK model, thereby recommending appropriate levetiracetam dosing regimens for different renal function stages. The predicted maximum plasma concentration (Cmax), time to maximum concentration (Tmax), area under the plasma concentration-time curve (AUC) were in agreement (0.8 ≤ fold error ≤ 1.2) with the observed, and the fold error of the trough concentrations in end-stage renal disease (ESRD) was 0.77 - 1.22. The prediction simulations indicated that the recommended doses of 1000, 750, 500, and 500 mg twice daily for epilepsy patients with mild, moderate, severe renal impairment, and ESRD, respectively, were sufficient to achieve the target plasma concentration of levetiracetam.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology