Medicare meets the cloud: the development of a secure platform for the storage and analysis of claims data.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2024-02-09 eCollection Date: 2024-04-01 DOI:10.1093/jamiaopen/ooae007
Roy L Simpson, Joseph A Lee, Yin Li, Yu Jin Kang, Circe Tsui, Jeannie P Cimiotti
{"title":"Medicare meets the cloud: the development of a secure platform for the storage and analysis of claims data.","authors":"Roy L Simpson, Joseph A Lee, Yin Li, Yu Jin Kang, Circe Tsui, Jeannie P Cimiotti","doi":"10.1093/jamiaopen/ooae007","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cloud-based solutions are a modern-day necessity for data intense computing. This case report describes in detail the development and implementation of Amazon Web Services (AWS) at Emory-a secure, reliable, and scalable platform to store and analyze identifiable research data from the Centers for Medicare and Medicaid Services (CMS).</p><p><strong>Materials and methods: </strong>Interdisciplinary teams from CMS, MBL Technologies, and Emory University collaborated to ensure compliance with CMS policy that consolidates laws, regulations, and other drivers of information security and privacy.</p><p><strong>Results: </strong>A dedicated team of individuals ensured successful transition from a physical storage server to a cloud-based environment. This included implementing access controls, vulnerability scanning, and audit logs that are reviewed regularly with a remediation plan. User adaptation required specific training to overcome the challenges of cloud computing.</p><p><strong>Conclusion: </strong>Challenges created opportunities for lessons learned through the creation of an end-product accepted by CMS and shared across disciplines university-wide.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"7 1","pages":"ooae007"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cloud-based solutions are a modern-day necessity for data intense computing. This case report describes in detail the development and implementation of Amazon Web Services (AWS) at Emory-a secure, reliable, and scalable platform to store and analyze identifiable research data from the Centers for Medicare and Medicaid Services (CMS).

Materials and methods: Interdisciplinary teams from CMS, MBL Technologies, and Emory University collaborated to ensure compliance with CMS policy that consolidates laws, regulations, and other drivers of information security and privacy.

Results: A dedicated team of individuals ensured successful transition from a physical storage server to a cloud-based environment. This included implementing access controls, vulnerability scanning, and audit logs that are reviewed regularly with a remediation plan. User adaptation required specific training to overcome the challenges of cloud computing.

Conclusion: Challenges created opportunities for lessons learned through the creation of an end-product accepted by CMS and shared across disciplines university-wide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗保险与云计算的结合:开发一个用于存储和分析报销数据的安全平台。
引言基于云的解决方案是现代数据密集型计算的必需品。本案例报告详细描述了埃默里大学亚马逊网络服务(AWS)的开发和实施过程--该平台安全、可靠、可扩展,可用于存储和分析来自医疗保险和医疗补助服务中心(CMS)的可识别研究数据:来自 CMS、MBL Technologies 和埃默里大学的跨学科团队通力合作,确保符合 CMS 政策,该政策整合了信息安全和隐私方面的法律、法规和其他驱动因素:由专人组成的团队确保了从物理存储服务器到云环境的成功过渡。这包括实施访问控制、漏洞扫描和审计日志,并通过补救计划定期进行审查。用户适应性要求进行专门培训,以克服云计算带来的挑战:通过创建一个被 CMS 接受并在全校范围内共享的最终产品,挑战创造了吸取经验教训的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Aligning prediction models with clinical information needs: infant sepsis case study. Semantic enrichment of Pomeranian health study data using LOINC and WHO-FIC terminology mapping principles. Exploring beyond diagnoses in electronic health records to improve discovery: a review of the phenome-wide association study. Toward digital caregiving network interventions for children with medical complexity living in socioeconomically disadvantaged neighborhoods. Transforming appeal decisions: machine learning triage for hospital admission denials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1