Gabriela Casani Cardoso, Fernando Augusto de Oliveira Ganzella, Guilherme Miniskiskosky, Regiane Stafim da Cunha, Edneia Amancio de Souza Ramos
{"title":"Digital methylation-specific PCR: New applications for liquid biopsy.","authors":"Gabriela Casani Cardoso, Fernando Augusto de Oliveira Ganzella, Guilherme Miniskiskosky, Regiane Stafim da Cunha, Edneia Amancio de Souza Ramos","doi":"10.1515/bmc-2022-0041","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic analysis is a fundamental part of understanding pathophysiological processes with potential applications in diagnosis, prognosis, and assessment of disease susceptibility. Epigenetic changes have been widely studied in chronic obstructive pulmonary disease (COPD), but currently, there is no molecular marker used to improve the treatment of patients. Furthermore, this progressive disease is a risk factor for the development of more severe COVID-19. Methylation-specific polymerase chain reaction (MSP-PCR) plays an important role in the analysis of DNA methylation profiles, and it is one of the most widely used techniques. In this context, the combination of MSP-PCR with emerging PCR technologies, such as digital PCR (dPCR), results in more accurate analyses of the DNA methylation profile of the genes under study. In this study, we propose the application of the MSP-dPCR technique to evaluate the methylation profile of the <i>ADAM33</i> gene from saliva samples and lung tissue biopsies of patients with COPD and COVID-19. MSP-dPCR generated a measurable prediction of gene methylation rate, with the potential application of this combined technology for diagnostic and prognostic purposes. It has also proven to be a powerful tool for liquid biopsy applications.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2022-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetic analysis is a fundamental part of understanding pathophysiological processes with potential applications in diagnosis, prognosis, and assessment of disease susceptibility. Epigenetic changes have been widely studied in chronic obstructive pulmonary disease (COPD), but currently, there is no molecular marker used to improve the treatment of patients. Furthermore, this progressive disease is a risk factor for the development of more severe COVID-19. Methylation-specific polymerase chain reaction (MSP-PCR) plays an important role in the analysis of DNA methylation profiles, and it is one of the most widely used techniques. In this context, the combination of MSP-PCR with emerging PCR technologies, such as digital PCR (dPCR), results in more accurate analyses of the DNA methylation profile of the genes under study. In this study, we propose the application of the MSP-dPCR technique to evaluate the methylation profile of the ADAM33 gene from saliva samples and lung tissue biopsies of patients with COPD and COVID-19. MSP-dPCR generated a measurable prediction of gene methylation rate, with the potential application of this combined technology for diagnostic and prognostic purposes. It has also proven to be a powerful tool for liquid biopsy applications.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.