Modelling and identification methods for simulation of cable-suspended dual-arm robotic systems

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-02-07 DOI:10.1016/j.robot.2024.104643
Giancarlo D’Ago , Mario Selvaggio , Alejandro Suarez , Francisco Javier Gañán , Luca Rosario Buonocore , Mario Di Castro , Vincenzo Lippiello , Anibal Ollero , Fabio Ruggiero
{"title":"Modelling and identification methods for simulation of cable-suspended dual-arm robotic systems","authors":"Giancarlo D’Ago ,&nbsp;Mario Selvaggio ,&nbsp;Alejandro Suarez ,&nbsp;Francisco Javier Gañán ,&nbsp;Luca Rosario Buonocore ,&nbsp;Mario Di Castro ,&nbsp;Vincenzo Lippiello ,&nbsp;Anibal Ollero ,&nbsp;Fabio Ruggiero","doi":"10.1016/j.robot.2024.104643","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes rigid-body modelling and identification procedures for long-reach dual-arm manipulators in a cable-suspended pendulum configuration. The proposed model relies on a virtually constrained open kinematic chain and lends itself to be simulated through the most commonly used robotic simulators without explicitly account for the cables constraints and flexibility. Moreover, a dynamic parameters identification procedure is devised to improve the simulation model fidelity and reduce the sim-to-real gap for controllers deployment. We show the capability of our model to handle different cable configurations and suspension mechanisms by customising it for two representative cable-suspended dual-arm manipulation systems: the LiCAS arms suspended by a drone and the CRANEbot system, featuring two Pilz arms suspended by a crane. The identified dynamic models are validated by comparing their evolution with data acquired from the real systems showing a high (between 91.3% to 99.4%) correlation of the response signals. In a comparison performed with baseline pendulum models, our model increases the simulation accuracy from 64.4% to 85.9%. The simulation environment and the related controllers are released as open-source code.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921889024000265/pdfft?md5=eb5e4290ceb76957689364d5f8787996&pid=1-s2.0-S0921889024000265-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000265","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes rigid-body modelling and identification procedures for long-reach dual-arm manipulators in a cable-suspended pendulum configuration. The proposed model relies on a virtually constrained open kinematic chain and lends itself to be simulated through the most commonly used robotic simulators without explicitly account for the cables constraints and flexibility. Moreover, a dynamic parameters identification procedure is devised to improve the simulation model fidelity and reduce the sim-to-real gap for controllers deployment. We show the capability of our model to handle different cable configurations and suspension mechanisms by customising it for two representative cable-suspended dual-arm manipulation systems: the LiCAS arms suspended by a drone and the CRANEbot system, featuring two Pilz arms suspended by a crane. The identified dynamic models are validated by comparing their evolution with data acquired from the real systems showing a high (between 91.3% to 99.4%) correlation of the response signals. In a comparison performed with baseline pendulum models, our model increases the simulation accuracy from 64.4% to 85.9%. The simulation environment and the related controllers are released as open-source code.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于模拟缆索悬挂式双臂机器人系统的建模和识别方法
本文针对缆索悬挂摆式配置的长臂双机械手提出了刚体建模和识别程序。提出的模型依赖于虚拟约束开放式运动链,可通过最常用的机器人模拟器进行模拟,而无需明确考虑缆索约束和柔性。此外,我们还设计了一种动态参数识别程序,以提高仿真模型的保真度,减少控制器部署过程中模拟与实际的差距。我们为两个具有代表性的缆索悬挂式双臂操纵系统定制了模型,展示了模型处理不同缆索配置和悬挂机制的能力:由无人机悬挂的 LiCAS 机械臂和由起重机悬挂的两个 Pilz 机械臂组成的 CRANEbot 系统。确定的动态模型通过将其演变过程与从实际系统中获取的数据进行比较进行了验证,结果显示响应信号的相关性很高(在 91.3% 到 99.4% 之间)。在与基线摆模型的比较中,我们的模型将仿真精度从 64.4% 提高到 85.9%。仿真环境和相关控制器以开放源代码的形式发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
A survey of demonstration learning Model-less optimal visual control of tendon-driven continuum robots using recurrent neural network-based neurodynamic optimization Editorial Board GSC: A graph-based skill composition framework for robot learning DewROS2: A platform for informed Dew Robotics in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1