{"title":"Multinuclear 1H/13C/15N chemical shift assignment of therapeutic octreotide acetate performed at natural abundance","authors":"Alexander J. Menke, Fu Chen, Kang Chen","doi":"10.1002/mrc.5436","DOIUrl":null,"url":null,"abstract":"<p>Octreotide acetate, the active pharmaceutical ingredient in the long-acting release (LAR) drug product Sandostatin®, is a cyclic octapeptide that mimics the naturally occurring somatostatin peptide hormone. Modern NMR can be a robust analytical method to identify and quantify octreotide molecules. Previous <sup>1</sup>H chemical shift assignments were mostly performed in organic solvents, and no assignments for heteronuclear <sup>13</sup>C, <sup>15</sup>N, and aromatic <sup>1</sup>H nuclei are available. Here, using state-of-the-art 1D and 2D homo- and heteronuclear NMR experiments, octreotide was fully assigned, including water exchangeable amide protons, in aqueous buffer except for <sup>13</sup>CO and <sup>15</sup>NH of F1, <sup>15</sup>NH of C2, and <sup>15</sup>N<i>ζ</i>H<i>ζ</i> of K5 that were not observed because of water exchange or conformational exchange. The solution NMR spectra were then directly compared with 1D <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N solid-state NMR (SSNMR) spectra showing the potential applicability of <sup>13</sup>C/<sup>15</sup>N SSNMR for octreotide drug product characterization.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 7","pages":"486-496"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5436","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Octreotide acetate, the active pharmaceutical ingredient in the long-acting release (LAR) drug product Sandostatin®, is a cyclic octapeptide that mimics the naturally occurring somatostatin peptide hormone. Modern NMR can be a robust analytical method to identify and quantify octreotide molecules. Previous 1H chemical shift assignments were mostly performed in organic solvents, and no assignments for heteronuclear 13C, 15N, and aromatic 1H nuclei are available. Here, using state-of-the-art 1D and 2D homo- and heteronuclear NMR experiments, octreotide was fully assigned, including water exchangeable amide protons, in aqueous buffer except for 13CO and 15NH of F1, 15NH of C2, and 15NζHζ of K5 that were not observed because of water exchange or conformational exchange. The solution NMR spectra were then directly compared with 1D 1H/13C/15N solid-state NMR (SSNMR) spectra showing the potential applicability of 13C/15N SSNMR for octreotide drug product characterization.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.