Maliheh Gharibshahian, Morteza Alizadeh, Mohammad Kamalabadi Farahani, Majid Salehi
{"title":"Fabrication of Rosuvastatin-Incorporated Polycaprolactone -Gelatin Scaffold for Bone Repair: A Preliminary <i>In Vitro</i> Study.","authors":"Maliheh Gharibshahian, Morteza Alizadeh, Mohammad Kamalabadi Farahani, Majid Salehi","doi":"10.22074/cellj.2023.2009047.1391","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Rosuvastatin (RSV) is a hydrophilic, effective statin with a long half-life that stimulates bone regeneration. The present study aims to develop a new scaffold and controlled release system for RSV with favourable properties for bone tissue engineering (BTE).</p><p><strong>Materials and methods: </strong>In this experimental study, high porous polycaprolactone (PCL)-gelatin scaffolds that contained different concentrations of RSV (0 mg/10 ml, 0.1 mg/10 ml, 0.5 mg/10 ml, 2.5 mg/10 ml, 12.5 mg/10 ml, and 62.5 mg/10 ml) were fabricated by the thermally-induced phase separation (TIPS) method. Mechanical and biological properties of the scaffolds were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), compressive strength, porosity, MTT, alkaline phosphatase (ALP) activity, water contact angle, degradation rate, pH alteration, blood clotting index (BCI), and hemocompatibility.</p><p><strong>Results: </strong>SEM analysis confirmed that the porous structure of the scaffolds contained interconnected pores. FTIR results showed that the RSV structure was maintained during the scaffold's fabrication. RSV (up to 62.5 mg/10 ml) increased compressive strength (16.342 ± 1.79 MPa), wettability (70.2), and degradation rate of the scaffolds. Scaffolds that contained 2.5 mg/10 ml RSV had the best effect on the human umbilical cord mesenchymal stem cell (HUC-MSCs) survival, hemocompatibility, and BCI. As a sustained release system, only 31.68 ± 0.1% of RSV was released from the PCL-Gelatin-2.5 mg/10 ml RSV scaffold over 30 days. In addition, the results of ALP activity showed that RSV increased the osteogenic differentiation potential of the scaffolds.</p><p><strong>Conclusion: </strong>PCL-Gelatin-2.5 mg/10 ml RSV scaffolds have favorable mechanical, physical, and osteogenic properties for bone tissue and provide a favorable release system for RSV. They can mentioned as a a promising strategy for bone regeneration that should be further assessed in animals and clinical studies.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"70-80"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.22074/cellj.2023.2009047.1391","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Rosuvastatin (RSV) is a hydrophilic, effective statin with a long half-life that stimulates bone regeneration. The present study aims to develop a new scaffold and controlled release system for RSV with favourable properties for bone tissue engineering (BTE).
Materials and methods: In this experimental study, high porous polycaprolactone (PCL)-gelatin scaffolds that contained different concentrations of RSV (0 mg/10 ml, 0.1 mg/10 ml, 0.5 mg/10 ml, 2.5 mg/10 ml, 12.5 mg/10 ml, and 62.5 mg/10 ml) were fabricated by the thermally-induced phase separation (TIPS) method. Mechanical and biological properties of the scaffolds were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), compressive strength, porosity, MTT, alkaline phosphatase (ALP) activity, water contact angle, degradation rate, pH alteration, blood clotting index (BCI), and hemocompatibility.
Results: SEM analysis confirmed that the porous structure of the scaffolds contained interconnected pores. FTIR results showed that the RSV structure was maintained during the scaffold's fabrication. RSV (up to 62.5 mg/10 ml) increased compressive strength (16.342 ± 1.79 MPa), wettability (70.2), and degradation rate of the scaffolds. Scaffolds that contained 2.5 mg/10 ml RSV had the best effect on the human umbilical cord mesenchymal stem cell (HUC-MSCs) survival, hemocompatibility, and BCI. As a sustained release system, only 31.68 ± 0.1% of RSV was released from the PCL-Gelatin-2.5 mg/10 ml RSV scaffold over 30 days. In addition, the results of ALP activity showed that RSV increased the osteogenic differentiation potential of the scaffolds.
Conclusion: PCL-Gelatin-2.5 mg/10 ml RSV scaffolds have favorable mechanical, physical, and osteogenic properties for bone tissue and provide a favorable release system for RSV. They can mentioned as a a promising strategy for bone regeneration that should be further assessed in animals and clinical studies.
期刊介绍:
The “Cell Journal (Yakhteh)“, formerly published as “Yakhteh Medical Journal”, is a quarterly English publication of Royan Institute. This journal focuses on topics relevant to cellular and molecular scientific areas, besides other related fields. The Cell J has been certified by Ministry of Culture and Islamic Guidance in 1999 and was accredited as a scientific and research journal by HBI (Health and Biomedical Information) Journal Accreditation Commission in 2000 which is an open access journal.