Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-01 Epub Date: 2024-02-14 DOI:10.1139/cjm-2023-0175
Nicole Lerminiaux, Ken Fakharuddin, Michael R Mulvey, Laura Mataseje
{"title":"Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies.","authors":"Nicole Lerminiaux, Ken Fakharuddin, Michael R Mulvey, Laura Mataseje","doi":"10.1139/cjm-2023-0175","DOIUrl":null,"url":null,"abstract":"<p><p>The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing <i>Enterobacterales</i> bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2023-0175","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们还需要 Illumina 测序数据吗?评估牛津纳米孔技术公司 R10.4.1 流式细胞和 Rapid v14 文库预处理试剂盒用于革兰氏阴性细菌全基因组组装的效果。
目前,最好的全基因组组装是由高精度短线程测序数据和长线程测序数据组合而成的,长线程测序数据可以弥补重复和有问题的区域。牛津纳米孔技术公司(ONT)生产长线程测序平台,他们正在不断改进技术,以获得更高质量的读数数据,其质量已接近从 Illumina 等短线程平台获得的数据。随着这些创新的不断进行,我们评估了快速条形码检测试剂盒 v14 (SQK-RBK114) 所产生的 ONT 读数覆盖率对产生高质量的混合基因组和纯长读数基因组组装所必需的程度。我们发现,如果有 Illumina 数据,30 倍的长线程覆盖率就足够了,而对于纯长线程组装,建议使用更大(至少 100 倍)的长线程覆盖率。Illumina 抛光仍在改善纯长读取组装中的 SNV 和 INDEL。我们还研究了纯长读数据是否能准确鉴定抗菌素耐药基因,结果发现,无论ONT覆盖率如何,Flye组装都能检测到大于96%的耐药基因,其特征和长度均为100%。总之,快速条形码工具包 v14 和纯长读数组装可以作为一种最佳测序策略(即质粒鉴定和 AMR 检测),但更精细的分析(即 SNV)仍受益于短读数数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1