ICP wave morphology as a screening test to exclude intracranial hypertension in brain-injured patients: a non-invasive perspective.

IF 2 3区 医学 Q2 ANESTHESIOLOGY Journal of Clinical Monitoring and Computing Pub Date : 2024-08-01 Epub Date: 2024-02-14 DOI:10.1007/s10877-023-01120-3
Fabiano Moulin de Moraes, Sérgio Brasil, Gustavo Frigieri, Chiara Robba, Wellingson Paiva, Gisele Sampaio Silva
{"title":"ICP wave morphology as a screening test to exclude intracranial hypertension in brain-injured patients: a non-invasive perspective.","authors":"Fabiano Moulin de Moraes, Sérgio Brasil, Gustavo Frigieri, Chiara Robba, Wellingson Paiva, Gisele Sampaio Silva","doi":"10.1007/s10877-023-01120-3","DOIUrl":null,"url":null,"abstract":"<p><p>Intracranial hypertension (IH) is a life-threating condition especially for the brain injured patient. In such cases, an external ventricular drain (EVD) or an intraparenchymal bolt are the conventional gold standard for intracranial pressure (ICPi) monitoring. However, these techniques have several limitations. Therefore, identifying an ideal screening method for IH is important to avoid the unnecessary placement of ICPi and expedite its introduction in patients who require it. A potential screening tool is the ICP wave morphology (ICPW) which changes according to the intracranial volume-pressure curve. Specifically, the P2/P1 ratio of the ICPW has shown promise as a triage test to indicate normal ICP. In this study, we propose evaluating the noninvasive ICPW (nICPW-B4C sensor) as a screening method for ICPi monitoring in patients with moderate to high probability of IH. This is a retrospective analysis of a prospective, multicenter study that recruited adult patients requiring ICPi monitoring from both Federal University of São Paulo and University of São Paulo Medical School Hospitals. ICPi values and the nICPW parameters were obtained from both the invasive and the noninvasive methods simultaneously 5 min after the closure of the EVD drainage. ICP assessment was performed using a catheter inserted into the ventricle and connected to a pressure transducer and a drainage system. The B4C sensor was positioned on the patient's scalp without the need for trichotomy, surgical incision or trepanation, and the morphology of the ICP waves acquired through a strain sensor that can detect and monitor skull bone deformations caused by changes in ICP. All patients were monitored using this noninvasive system for at least 10 min per session. The area under the curve (AUC) was used to describe discriminatory power of the P2/P1 ratio for IH, with emphasis in the Negative Predictive value (NPV), based on the Youden index, and the negative likelihood ratio [LR-]. Recruitment occurred from August 2017 to March 2020. A total of 69 patients fulfilled inclusion and exclusion criteria in the two centers and a total of 111 monitorizations were performed. The mean P2/P1 ratio value in the sample was 1.12. The mean P2/P1 value in the no IH population was 1.01 meanwhile in the IH population was 1.32 (p < 0.01). The best Youden index for the mean P2/P1 ratio was with a cut-off value of 1.13 showing a sensitivity of 93%, specificity of 60%, and a NPV of 97%, as well as an AUC of 0.83 to predict IH. With the 1.13 cut-off value for P2/P1 ratio, the LR- for IH was 0.11, corresponding to a strong performance in ruling out the condition (IH), with an approximate 45% reduction in condition probability after a negative test (ICPW). To conclude, the P2/P1 ratio of the noninvasive ICP waveform showed in this study a high Negative Predictive Value and Likelihood Ratio in different acute neurological conditions to rule out IH. As a result, this parameter may be beneficial in situations where invasive methods are not feasible or unavailable and to screen high-risk patients for potential invasive ICP monitoring.Trial registration: At clinicaltrials.gov under numbers NCT05121155 (Registered 16 November 2021-retrospectively registered) and NCT03144219 (Registered 30 September 2022-retrospectively registered).</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":"773-782"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-023-01120-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intracranial hypertension (IH) is a life-threating condition especially for the brain injured patient. In such cases, an external ventricular drain (EVD) or an intraparenchymal bolt are the conventional gold standard for intracranial pressure (ICPi) monitoring. However, these techniques have several limitations. Therefore, identifying an ideal screening method for IH is important to avoid the unnecessary placement of ICPi and expedite its introduction in patients who require it. A potential screening tool is the ICP wave morphology (ICPW) which changes according to the intracranial volume-pressure curve. Specifically, the P2/P1 ratio of the ICPW has shown promise as a triage test to indicate normal ICP. In this study, we propose evaluating the noninvasive ICPW (nICPW-B4C sensor) as a screening method for ICPi monitoring in patients with moderate to high probability of IH. This is a retrospective analysis of a prospective, multicenter study that recruited adult patients requiring ICPi monitoring from both Federal University of São Paulo and University of São Paulo Medical School Hospitals. ICPi values and the nICPW parameters were obtained from both the invasive and the noninvasive methods simultaneously 5 min after the closure of the EVD drainage. ICP assessment was performed using a catheter inserted into the ventricle and connected to a pressure transducer and a drainage system. The B4C sensor was positioned on the patient's scalp without the need for trichotomy, surgical incision or trepanation, and the morphology of the ICP waves acquired through a strain sensor that can detect and monitor skull bone deformations caused by changes in ICP. All patients were monitored using this noninvasive system for at least 10 min per session. The area under the curve (AUC) was used to describe discriminatory power of the P2/P1 ratio for IH, with emphasis in the Negative Predictive value (NPV), based on the Youden index, and the negative likelihood ratio [LR-]. Recruitment occurred from August 2017 to March 2020. A total of 69 patients fulfilled inclusion and exclusion criteria in the two centers and a total of 111 monitorizations were performed. The mean P2/P1 ratio value in the sample was 1.12. The mean P2/P1 value in the no IH population was 1.01 meanwhile in the IH population was 1.32 (p < 0.01). The best Youden index for the mean P2/P1 ratio was with a cut-off value of 1.13 showing a sensitivity of 93%, specificity of 60%, and a NPV of 97%, as well as an AUC of 0.83 to predict IH. With the 1.13 cut-off value for P2/P1 ratio, the LR- for IH was 0.11, corresponding to a strong performance in ruling out the condition (IH), with an approximate 45% reduction in condition probability after a negative test (ICPW). To conclude, the P2/P1 ratio of the noninvasive ICP waveform showed in this study a high Negative Predictive Value and Likelihood Ratio in different acute neurological conditions to rule out IH. As a result, this parameter may be beneficial in situations where invasive methods are not feasible or unavailable and to screen high-risk patients for potential invasive ICP monitoring.Trial registration: At clinicaltrials.gov under numbers NCT05121155 (Registered 16 November 2021-retrospectively registered) and NCT03144219 (Registered 30 September 2022-retrospectively registered).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 ICP 波形态学作为排除脑损伤患者颅内高压的筛选测试:无创视角。
颅内高压(IH)是一种威胁生命的疾病,尤其是对脑损伤患者而言。在这种情况下,脑室外引流管(EVD)或实质内栓塞是监测颅内压(ICPi)的传统金标准。然而,这些技术都有一些局限性。因此,确定一种理想的 IH 筛查方法对于避免不必要的 ICPi 置入和加快需要 ICPi 的患者的置入非常重要。ICP波形态(ICPW)是一种潜在的筛查工具,它根据颅内容积-压力曲线的变化而变化。具体来说,ICPW 的 P2/P1 比值已显示出作为指示正常 ICP 的分流测试的前景。在本研究中,我们建议将无创 ICPW(nICPW-B4C 传感器)作为中度至高度 IH 患者 ICPi 监测的筛选方法进行评估。这是一项前瞻性多中心研究的回顾性分析,该研究招募了圣保罗联邦大学和圣保罗大学医学院附属医院需要进行 ICPi 监测的成年患者。在关闭 EVD 引流后 5 分钟,同时通过有创和无创方法获得 ICPi 值和 nICPW 参数。ICP 评估使用插入心室的导管进行,导管与压力传感器和引流系统相连。B4C 传感器安装在患者头皮上,无需切开头皮、手术切口或穿刺,ICP 波的形态通过应变传感器获得,应变传感器可检测和监测 ICP 变化引起的颅骨变形。所有患者均使用该无创系统进行监测,每次监测至少 10 分钟。曲线下面积(AUC)用于描述 P2/P1 比值对 IH 的判别能力,重点是基于尤登指数的负预测值(NPV)和负似然比 [LR-]。招募时间为 2017 年 8 月至 2020 年 3 月。两个中心共有 69 名患者符合纳入和排除标准,共进行了 111 次监测。样本中 P2/P1 比率的平均值为 1.12。无IH人群的P2/P1平均值为1.01,而有IH人群的P2/P1平均值为1.32(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
13.60%
发文量
144
审稿时长
6-12 weeks
期刊介绍: The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine. The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group. The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.
期刊最新文献
Automated and reference methods for the calculation of left ventricular outflow tract velocity time integral or ejection fraction by non-cardiologists: a systematic review on the agreement of the two methods. Entropy of difference works similarly to permutation entropy for the assessment of anesthesia and sleep EEG despite the lower computational effort. Noninvasive estimation of PaCO2 from volumetric capnography in animals with injured lungs: an Artificial Intelligence approach. Rapid non-invasive measurement of mitochondrial oxygen tension after microneedle pre-treatment: a feasibility study in human volunteers. Electroencephalogram monitoring during anesthesia and critical care: a guide for the clinician.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1