Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in bioinformatics Pub Date : 2024-01-31 eCollection Date: 2024-01-01 DOI:10.3389/fbinf.2024.1293412
Aimer Gutierrez-Diaz, Steve Hoffmann, Juan Carlos Gallego-Gómez, Clara Isabel Bermudez-Santana
{"title":"Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells.","authors":"Aimer Gutierrez-Diaz, Steve Hoffmann, Juan Carlos Gallego-Gómez, Clara Isabel Bermudez-Santana","doi":"10.3389/fbinf.2024.1293412","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1293412"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2024.1293412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在内皮 HMEC-1 细胞感染登革热病毒过程中,通过系统计算寻找 ncRNAs 衍生的小 RNAs。
近年来,源自非编码 RNA 的小 RNA 片段(sfd-RNAs)因其在功能和结构上与 miRNAs 相似而备受关注,这为我们理解小 RNA 介导的基因调控增加了另一层复杂性。尽管如此,科学家们仍需要更多的工具来检测 sfd-RNAs 的差异表达,因为目前检测 miRNAs 的方法可能无法直接应用于它们。主要原因是缺乏准确的小 RNA 和 ncRNA 注释、多映射读数(MMR)位置以及人类基因组中 ncRNA 的多拷贝特性。为了解决这些问题,我们采用了一种方法,通过使用综合拷贝数校正 ncRNA 注释,检测差异表达的 sfd-RNA,包括典型 miRNA。这种方法与 16 种不同的计算策略相结合,由四种排列器和四种归一化方法组合而成,为每种差异表达的 sfd-RNA 提供了一个预测等级顺序。通过系统地解决这三个主要问题,我们可以检测出受登革热病毒感染的人真皮微血管内皮细胞中差异表达的 miRNA 和 sfd-RNA。尽管还需要更多的生物学评估,但 hsa-mir-103a 和 hsa-mir-494 的两个分子靶标(CDK5 和 PI3/AKT)似乎与登革热病毒(DENV)感染有关。在这里,我们进行了全面的注释和差异表达分析,这些分析可用于其他研究,探讨从 ncRNAs 派生的小片段 RNA 群体在病毒感染中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Quantification of muscle fiber malformations using edge detection to investigate chronic muscle pressure ulcers. Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of Beauveria bassiana. DCMA: faster protein backbone dihedral angle prediction using a dilated convolutional attention-based neural network. Identification of novel drug targets for Helicobacter pylori: structure-based virtual screening of potential inhibitors against DAH7PS protein involved in the shikimate pathway. Editorial: Women in bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1