Toxic Advanced Glycation End-Products-Dependent Alzheimer's Disease- Like Alternation in the Microtubule System.

Hayahide Ooi, Yoshiki Koriyama
{"title":"Toxic Advanced Glycation End-Products-Dependent Alzheimer's Disease- Like Alternation in the Microtubule System.","authors":"Hayahide Ooi, Yoshiki Koriyama","doi":"10.2174/0115672050288723240213053342","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's Disease (AD). However, the detailed mechanism underlying T2DM-related AD remains unknown. In DM, many types of advanced glycation end-products (AGEs) are formed and accumulated. In our previous study, we demonstrated that Glyceraldehyde (GA)-derived Toxic Advanced Glycation End-products (Toxic AGEs, TAGE) strongly showed cytotoxicity against neurons and induced similar alterations to those observed in AD. Further, GA induced dysfunctional neurite outgrowth via TAGE-β-- tubulin aggregation, which resulted in the TAGE-dependent abnormal aggregation of β-tubulin and tau phosphorylation. Herein, we provide a perspective on the possibility that T2DM increases the probability of AD onset and accelerates its progression.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"677-681"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672050288723240213053342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's Disease (AD). However, the detailed mechanism underlying T2DM-related AD remains unknown. In DM, many types of advanced glycation end-products (AGEs) are formed and accumulated. In our previous study, we demonstrated that Glyceraldehyde (GA)-derived Toxic Advanced Glycation End-products (Toxic AGEs, TAGE) strongly showed cytotoxicity against neurons and induced similar alterations to those observed in AD. Further, GA induced dysfunctional neurite outgrowth via TAGE-β-- tubulin aggregation, which resulted in the TAGE-dependent abnormal aggregation of β-tubulin and tau phosphorylation. Herein, we provide a perspective on the possibility that T2DM increases the probability of AD onset and accelerates its progression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微管系统中有毒的高级糖化终产物依赖性阿尔茨海默氏症样交替。
2 型糖尿病(T2DM)是阿尔茨海默病(AD)的一个危险因素。然而,与 T2DM 相关的老年痴呆症的详细机制仍不清楚。在糖尿病中,会形成并积累多种高级糖化终产物(AGEs)。在我们之前的研究中,我们证实了甘油醛(GA)衍生的毒性高级糖化终产物(毒性 AGEs,TAGE)对神经元具有强烈的细胞毒性,并诱发了与在 AD 中观察到的类似改变。此外,GA通过TAGE-β-tubulin聚集诱导神经元异常生长,从而导致依赖于TAGE的β-tubulin异常聚集和tau磷酸化。在此,我们从一个角度探讨了T2DM增加AD发病概率并加速其进展的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualization Analysis of Tau Protein in the Brain of Alzheimer's Disease: A Scoping Literature Review. Association Between Metabolomics Findings and Brain Hypometabolism in Mild Alzheimer's Disease. Extracellular Vesicles: A Promising Therapeutic Approach to Alzheimer's Disease. Trafficking of Muscarinic 1 Acetylcholine Receptor Regulated by VPS35 in Alzheimer's Disease. Mitochondrial Fragmentation as a Key Driver of Neurodegenerative Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1