A Novel Topological Method for Automated and Exhaustive Wire Harness Design

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer-Aided Design Pub Date : 2024-02-13 DOI:10.1016/j.cad.2024.103694
Arun Rehal , Dibakar Sen
{"title":"A Novel Topological Method for Automated and Exhaustive Wire Harness Design","authors":"Arun Rehal ,&nbsp;Dibakar Sen","doi":"10.1016/j.cad.2024.103694","DOIUrl":null,"url":null,"abstract":"<div><p>The current practice of manual wire harness design is labor-intensive, time-consuming, costly, and error-prone. In this paper, we present a methodology for completely automated wire harness design. We propose a topological approach that yields all the possible electrically admissible but topologically distinct harness system layouts that can be used to connect the specified terminals. Each generated layout represents a possible harness design. For layout generation, the proposed method utilizes the so-called routing graphs associated with the closed surfaces bounding the product. The developed methods are able to handle both — (1) On-Surface routing, when the wires are required to be constrained to the surface of the product, and (2) In-Air routing, when in addition to the surface the wires are also allowed to be embedded in product’s ambiance. For the final geometric embedding of the generated harnesses, we present an optimization-based methodology that determines the optimum lengths of the segments over which the wires should be bundled together. The results presented demonstrate the efficacy of the proposed approach through multiple realistic examples.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"170 ","pages":"Article 103694"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000216","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The current practice of manual wire harness design is labor-intensive, time-consuming, costly, and error-prone. In this paper, we present a methodology for completely automated wire harness design. We propose a topological approach that yields all the possible electrically admissible but topologically distinct harness system layouts that can be used to connect the specified terminals. Each generated layout represents a possible harness design. For layout generation, the proposed method utilizes the so-called routing graphs associated with the closed surfaces bounding the product. The developed methods are able to handle both — (1) On-Surface routing, when the wires are required to be constrained to the surface of the product, and (2) In-Air routing, when in addition to the surface the wires are also allowed to be embedded in product’s ambiance. For the final geometric embedding of the generated harnesses, we present an optimization-based methodology that determines the optimum lengths of the segments over which the wires should be bundled together. The results presented demonstrate the efficacy of the proposed approach through multiple realistic examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于自动详尽线束设计的新型拓扑方法
目前的人工线束设计工作劳动密集、耗时、成本高且容易出错。在本文中,我们提出了一种完全自动化的线束设计方法。我们提出了一种拓扑方法,可生成所有电气上可接受但拓扑上不同的线束系统布局,用于连接指定的端子。每个生成的布局都代表一种可能的线束设计。为了生成布局,所提出的方法利用了与产品边界封闭曲面相关的所谓路由图。所开发的方法能够处理以下两种情况:(1) 表面布线,即导线必须限制在产品表面;(2) 空气中布线,即除了表面之外,导线还可以嵌入产品环境中。对于生成线束的最终几何嵌入,我们提出了一种基于优化的方法,该方法可确定电线应捆绑在一起的线段的最佳长度。所展示的结果通过多个现实案例证明了所建议方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer-Aided Design
Computer-Aided Design 工程技术-计算机:软件工程
CiteScore
5.50
自引率
4.70%
发文量
117
审稿时长
4.2 months
期刊介绍: Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design. Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.
期刊最新文献
Editorial Board Plate Manufacturing Constraint in Topology Optimization Using Anisotropic Filter Feature-aware Singularity Structure Optimization for Hex Mesh Fast algorithm for extracting domains and regions from three-dimensional triangular surface meshes Higher-degrees Hybrid Non-uniform Subdivision Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1