Coupling between the cell cycle and the circadian clock: Lessons from computational modelling and consequences for cancer chronotherapy

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2024-02-01 DOI:10.1016/j.coisb.2024.100507
Didier Gonze
{"title":"Coupling between the cell cycle and the circadian clock: Lessons from computational modelling and consequences for cancer chronotherapy","authors":"Didier Gonze","doi":"10.1016/j.coisb.2024.100507","DOIUrl":null,"url":null,"abstract":"<div><p>Chronotherapy aims at optimising the time of day and dosing of drugs administration. This is a promising perspective because the toxicity and efficacy of many drugs show a dependence on the time of the day at which they are administrated. Efficient cancer chronotherapy requires a good understanding of the interplay between the cell cycle and the circadian clock. Computational models offer a way to study the dynamics resulting from the coupling between these two biological oscillators and to predict successful therapeutic protocols. We review here recent advances and highlight key challenges for further developments of predictive mathematical models.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310024000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronotherapy aims at optimising the time of day and dosing of drugs administration. This is a promising perspective because the toxicity and efficacy of many drugs show a dependence on the time of the day at which they are administrated. Efficient cancer chronotherapy requires a good understanding of the interplay between the cell cycle and the circadian clock. Computational models offer a way to study the dynamics resulting from the coupling between these two biological oscillators and to predict successful therapeutic protocols. We review here recent advances and highlight key challenges for further developments of predictive mathematical models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞周期与昼夜节律时钟之间的耦合:计算建模的启示及对癌症时间疗法的影响
时间疗法旨在优化每天的用药时间和剂量。这是一个很有前景的观点,因为许多药物的毒性和疗效都与一天中的用药时间有关。高效的癌症时间疗法需要充分了解细胞周期与昼夜节律时钟之间的相互作用。计算模型为研究这两种生物振荡器之间的耦合所产生的动态变化以及预测成功的治疗方案提供了一种方法。我们在此回顾了最近的研究进展,并强调了进一步开发预测性数学模型所面临的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1