Phot Dhammapeera, Chloe Brunskill, Robin Hellerstedt, Zara M Bergström
{"title":"Counterfactual imagination impairs memory for true actions: EEG and behavioural evidence.","authors":"Phot Dhammapeera, Chloe Brunskill, Robin Hellerstedt, Zara M Bergström","doi":"10.1080/17588928.2024.2315814","DOIUrl":null,"url":null,"abstract":"<p><p>Imagined events can be misremembered as experienced, leading to memory distortions. However, less is known regarding how imagining counterfactual versions of past events can impair existing memories. We addressed this issue, and used EEG to investigate the neurocognitive processes involved when retrieving memories of true events that are associated with a competing imagined event. Participants first performed simple actions with everyday objects (e.g., rolling dice). A week later, they were shown pictures of some of the objects and either imagined the same action they had originally performed, or imagined a counterfactual action (e.g., stacking the dice). Subsequent tests showed that memory for performed actions was reduced after counterfactual imagination when compared to both veridical imagination and a baseline condition that had not been imagined at all, providing novel evidence that counterfactual imagination impairs true memories beyond simple forgetting over time. ERPs and EEG oscillations showed evidence of separate processes associated with memory retrieval versus post-retrieval processes that were recruited to support recall of memories that were challenging to access. The findings show that counterfactual imagination can cause impairments to sensorimotor-rich event memories, and provide new evidence regarding the neurocognitive mechanisms that are recruited when people need to distinguish memories of imagined versus true events.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"12-23"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2024.2315814","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Imagined events can be misremembered as experienced, leading to memory distortions. However, less is known regarding how imagining counterfactual versions of past events can impair existing memories. We addressed this issue, and used EEG to investigate the neurocognitive processes involved when retrieving memories of true events that are associated with a competing imagined event. Participants first performed simple actions with everyday objects (e.g., rolling dice). A week later, they were shown pictures of some of the objects and either imagined the same action they had originally performed, or imagined a counterfactual action (e.g., stacking the dice). Subsequent tests showed that memory for performed actions was reduced after counterfactual imagination when compared to both veridical imagination and a baseline condition that had not been imagined at all, providing novel evidence that counterfactual imagination impairs true memories beyond simple forgetting over time. ERPs and EEG oscillations showed evidence of separate processes associated with memory retrieval versus post-retrieval processes that were recruited to support recall of memories that were challenging to access. The findings show that counterfactual imagination can cause impairments to sensorimotor-rich event memories, and provide new evidence regarding the neurocognitive mechanisms that are recruited when people need to distinguish memories of imagined versus true events.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.