Biomechanical analysis of cervical spine (C2-C7) at different flexed postures.

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL International Journal of Artificial Organs Pub Date : 2024-03-01 Epub Date: 2024-02-16 DOI:10.1177/03913988241229625
Bhanu Priya Dandumahanti, Murali Subramaniyam
{"title":"Biomechanical analysis of cervical spine (C2-C7) at different flexed postures.","authors":"Bhanu Priya Dandumahanti, Murali Subramaniyam","doi":"10.1177/03913988241229625","DOIUrl":null,"url":null,"abstract":"<p><p>Musculoskeletal diseases are often related with postural changes in the neck region that can be caused by prolonged cervical flexion. This is one of the contributing factors. When determining the prevalence, causes, and related risks of neck discomfort, having a solid understanding of the biomechanics of the cervical spine (C1-C7) is absolutely necessary. The objective of this study is to make predictions regarding the intervertebral disc (IVD) stress values across C2-C7 IVD, the ligament stress, and the variation at 0°, 15°, 30°, 45°, and 60° of cervical neck angle using finite element analysis (FEA). In order to evaluate the mechanical properties of the cervical spine (particularly, C2-C7), this investigation makes use of computed tomography (CT) scans to develop a three-dimensional FEA model of the cervical spine. A preload of 50 N compression force was applied at the apex of the C2 vertebra, and all degrees of freedom below the C7 level were constrained. The primary objective of this investigation is to assess the distribution of von Mises stress within the IVDs and ligaments spanning C2-C7 at various flexion angles: 0°, 15°, 30°, 45°, and 60°, utilizing FEA. The outcomes derived from this analysis were subsequently compared to previously published experimental and FEA data to validate the model's ability to replicate the physiological motion of the cervical spine across different flexion angles.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":" ","pages":"205-211"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03913988241229625","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Musculoskeletal diseases are often related with postural changes in the neck region that can be caused by prolonged cervical flexion. This is one of the contributing factors. When determining the prevalence, causes, and related risks of neck discomfort, having a solid understanding of the biomechanics of the cervical spine (C1-C7) is absolutely necessary. The objective of this study is to make predictions regarding the intervertebral disc (IVD) stress values across C2-C7 IVD, the ligament stress, and the variation at 0°, 15°, 30°, 45°, and 60° of cervical neck angle using finite element analysis (FEA). In order to evaluate the mechanical properties of the cervical spine (particularly, C2-C7), this investigation makes use of computed tomography (CT) scans to develop a three-dimensional FEA model of the cervical spine. A preload of 50 N compression force was applied at the apex of the C2 vertebra, and all degrees of freedom below the C7 level were constrained. The primary objective of this investigation is to assess the distribution of von Mises stress within the IVDs and ligaments spanning C2-C7 at various flexion angles: 0°, 15°, 30°, 45°, and 60°, utilizing FEA. The outcomes derived from this analysis were subsequently compared to previously published experimental and FEA data to validate the model's ability to replicate the physiological motion of the cervical spine across different flexion angles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同屈曲姿势下颈椎(C2-C7)的生物力学分析。
肌肉骨骼疾病通常与颈部姿势变化有关,而颈部姿势变化可由颈椎长期屈曲引起。这是诱因之一。在确定颈部不适的发生率、原因和相关风险时,充分了解颈椎(C1-C7)的生物力学是绝对必要的。本研究的目的是利用有限元分析(FEA)预测 C2-C7 椎间盘应力值、韧带应力以及颈椎角度 0°、15°、30°、45° 和 60°时的变化。为了评估颈椎(尤其是 C2-C7)的机械特性,本研究利用计算机断层扫描(CT)建立了颈椎的三维有限元分析模型。在 C2 脊椎顶点施加 50 牛顿的预紧力,C7 以下的所有自由度均受到约束。这项研究的主要目的是利用有限元分析评估在不同屈曲角度(0°、15°、30°、45°和 60°)下横跨 C2-C7 的 IVD 和韧带内的 von Mises 应力分布情况。随后,将分析得出的结果与之前公布的实验和有限元分析数据进行比较,以验证该模型在不同屈曲角度下复制颈椎生理运动的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Artificial Organs
International Journal of Artificial Organs 医学-工程:生物医学
CiteScore
3.40
自引率
5.90%
发文量
92
审稿时长
3 months
期刊介绍: The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.
期刊最新文献
Optimizing ventricular assist device rotor design parameters through computational fluid dynamics and design of experiments. The Donnan equilibrium is still valid in high-volume HDF. Absolute blood volume and long-term survival in chronic hemodialysis patients. Analysis of fluid forces impacting on the impeller of a mixed flow blood pump with computational fluid dynamics. Risk factors for acute kidney injury in patients with severe acute pancreatitis: A systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1