{"title":"Causal effects of blood pressure and the risk of frailty: a bi-directional two-sample Mendelian randomization study","authors":"Ge Tian, Rong Zhou, Xingzhi Guo, Rui Li","doi":"10.1038/s41371-024-00901-w","DOIUrl":null,"url":null,"abstract":"Observational studies have indicated that high blood pressure (BP) may be a risk factor to frailty. However, the causal association between BP and frailty remains not well determined. The purpose of this bi-directional two-sample Mendelian randomization (MR) study was to investigate the causal relationship between BP and frailty. Independent single nucleotide polymorphisms (SNPs) strongly (P < 5E-08) associated with systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) were selected as instrumental variables. Two different published genome-wide association studies (GWAS) on BP from the CHARGE (n = 810,865) and ICBP (n = 757,601) consortia were included. Summary-level data on frailty index (FI) were obtained from the latest GWAS based on UK Biobank and Swedish TwinGene cohorts (n = 175,226). Inverse variance weighted (IVW) approach with other sensitivity analyses were used to calculate the causal estimate. Using the CHARGE dataset, genetic predisposition to increased SBP (β = 0.135, 95% CI = 0.093 to 0.176, P = 1.73E-10), DBP (β = 0.145, 95% CI = 0.104 to 0.186, P = 3.14E-12), and PP (β = 0.114, 95% CI = 0.070 to 0.157, p = 2.87E-07) contributed to a higher FI, which was validated in the ICBP dataset. There was no significant causal effect of FI on SBP, DBP, and PP. Similar results were obtained from different MR methods, indicating good stability. There was potential heterogeneity detected by Cochran’s Q test, but no horizontal pleiotropy was observed in MR-Egger intercept test (P > 0.05). These findings evinced that higher BP and PP were causally associated with an increased risk of frailty, suggesting that controlling hypertension could reduce the risk of frailty.","PeriodicalId":16070,"journal":{"name":"Journal of Human Hypertension","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Hypertension","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41371-024-00901-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Observational studies have indicated that high blood pressure (BP) may be a risk factor to frailty. However, the causal association between BP and frailty remains not well determined. The purpose of this bi-directional two-sample Mendelian randomization (MR) study was to investigate the causal relationship between BP and frailty. Independent single nucleotide polymorphisms (SNPs) strongly (P < 5E-08) associated with systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) were selected as instrumental variables. Two different published genome-wide association studies (GWAS) on BP from the CHARGE (n = 810,865) and ICBP (n = 757,601) consortia were included. Summary-level data on frailty index (FI) were obtained from the latest GWAS based on UK Biobank and Swedish TwinGene cohorts (n = 175,226). Inverse variance weighted (IVW) approach with other sensitivity analyses were used to calculate the causal estimate. Using the CHARGE dataset, genetic predisposition to increased SBP (β = 0.135, 95% CI = 0.093 to 0.176, P = 1.73E-10), DBP (β = 0.145, 95% CI = 0.104 to 0.186, P = 3.14E-12), and PP (β = 0.114, 95% CI = 0.070 to 0.157, p = 2.87E-07) contributed to a higher FI, which was validated in the ICBP dataset. There was no significant causal effect of FI on SBP, DBP, and PP. Similar results were obtained from different MR methods, indicating good stability. There was potential heterogeneity detected by Cochran’s Q test, but no horizontal pleiotropy was observed in MR-Egger intercept test (P > 0.05). These findings evinced that higher BP and PP were causally associated with an increased risk of frailty, suggesting that controlling hypertension could reduce the risk of frailty.
期刊介绍:
Journal of Human Hypertension is published monthly and is of interest to health care professionals who deal with hypertension (specialists, internists, primary care physicians) and public health workers. We believe that our patients benefit from robust scientific data that are based on well conducted clinical trials. We also believe that basic sciences are the foundations on which we build our knowledge of clinical conditions and their management. Towards this end, although we are primarily a clinical based journal, we also welcome suitable basic sciences studies that promote our understanding of human hypertension.
The journal aims to perform the dual role of increasing knowledge in the field of high blood pressure as well as improving the standard of care of patients. The editors will consider for publication all suitable papers dealing directly or indirectly with clinical aspects of hypertension, including but not limited to epidemiology, pathophysiology, therapeutics and basic sciences involving human subjects or tissues. We also consider papers from all specialties such as ophthalmology, cardiology, nephrology, obstetrics and stroke medicine that deal with the various aspects of hypertension and its complications.