{"title":"Mapping histone variant genomic distribution: Exploiting SNAP-tag labeling to follow the dynamics of incorporation of H3 variants.","authors":"Audrey Forest, Jean-Pierre Quivy, Geneviève Almouzni","doi":"10.1016/bs.mcb.2022.10.007","DOIUrl":null,"url":null,"abstract":"<p><p>In the eukaryotic cell nucleus, in addition to the genomic information, chromatin organization provides an additional set of information which is more versatile and associates with distinct cell identities. In particular, the marking of the nucleosomes by a choice of specific histone variants can potentially confer distinct functional properties critical for genome function and stability. To understand how this unique marking operates we need to access to the genomic distribution of each variant. A general approach based on ChIP-Seq, relies on the specific isolation of DNA bound to the variant of interest, usually using cross-linked material and specific antibodies. The availability of reliable specific antibodies recognizing with high affinity crosslinked antigen represents a limitation. Here, we describe an experimental approach exploiting a tag fused to the protein of interest. The chose protein is a histone variant and we use native conditions for the selective capture of the histone variant in a nucleosome. Most importantly, we describe how to use a particular labeling system, with a SNAP tag enabling to specifically capture nucleosomes comprising newly synthesized histones. This method allows to follow the newly deposited histone variant at various times thereby offering a unique opportunity to evaluate the dynamics of histone deposition genome wide. We describe the method here for H3 variant, but it can be adapted to any histone variant with the appropriate fused tag to address genome wide a turn-over associated to the biological context of interest.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2022.10.007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
In the eukaryotic cell nucleus, in addition to the genomic information, chromatin organization provides an additional set of information which is more versatile and associates with distinct cell identities. In particular, the marking of the nucleosomes by a choice of specific histone variants can potentially confer distinct functional properties critical for genome function and stability. To understand how this unique marking operates we need to access to the genomic distribution of each variant. A general approach based on ChIP-Seq, relies on the specific isolation of DNA bound to the variant of interest, usually using cross-linked material and specific antibodies. The availability of reliable specific antibodies recognizing with high affinity crosslinked antigen represents a limitation. Here, we describe an experimental approach exploiting a tag fused to the protein of interest. The chose protein is a histone variant and we use native conditions for the selective capture of the histone variant in a nucleosome. Most importantly, we describe how to use a particular labeling system, with a SNAP tag enabling to specifically capture nucleosomes comprising newly synthesized histones. This method allows to follow the newly deposited histone variant at various times thereby offering a unique opportunity to evaluate the dynamics of histone deposition genome wide. We describe the method here for H3 variant, but it can be adapted to any histone variant with the appropriate fused tag to address genome wide a turn-over associated to the biological context of interest.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.