Integrative pathway analysis with gene expression, miRNA, methylation and copy number variation for breast cancer subtypes.

IF 0.9 4区 数学 Q3 Mathematics Statistical Applications in Genetics and Molecular Biology Pub Date : 2024-02-19 eCollection Date: 2024-01-01 DOI:10.1515/sagmb-2019-0050
Henry Linder, Yuping Zhang, Yunqi Wang, Zhengqing Ouyang
{"title":"Integrative pathway analysis with gene expression, miRNA, methylation and copy number variation for breast cancer subtypes.","authors":"Henry Linder, Yuping Zhang, Yunqi Wang, Zhengqing Ouyang","doi":"10.1515/sagmb-2019-0050","DOIUrl":null,"url":null,"abstract":"<p><p>Developments in biotechnologies enable multi-platform data collection for functional genomic units apart from the gene. Profiling of non-coding microRNAs (miRNAs) is a valuable tool for understanding the molecular profile of the cell, both for canonical functions and malignant behavior due to complex diseases. We propose a graphical mixed-effects statistical model incorporating miRNA-gene target relationships. We implement an integrative pathway analysis that leverages measurements of miRNA activity for joint analysis with multimodal observations of gene activity including gene expression, methylation, and copy number variation. We apply our analysis to a breast cancer dataset, and consider differential activity in signaling pathways across breast tumor subtypes. We offer discussion of specific signaling pathways and the effect of miRNA integration, as well as publish an interactive data visualization to give public access to the results of our analysis.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2019-0050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Developments in biotechnologies enable multi-platform data collection for functional genomic units apart from the gene. Profiling of non-coding microRNAs (miRNAs) is a valuable tool for understanding the molecular profile of the cell, both for canonical functions and malignant behavior due to complex diseases. We propose a graphical mixed-effects statistical model incorporating miRNA-gene target relationships. We implement an integrative pathway analysis that leverages measurements of miRNA activity for joint analysis with multimodal observations of gene activity including gene expression, methylation, and copy number variation. We apply our analysis to a breast cancer dataset, and consider differential activity in signaling pathways across breast tumor subtypes. We offer discussion of specific signaling pathways and the effect of miRNA integration, as well as publish an interactive data visualization to give public access to the results of our analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基因表达、miRNA、甲基化和拷贝数变异对乳腺癌亚型进行整合通路分析。
生物技术的发展使基因以外的功能基因组单元的多平台数据收集成为可能。对非编码 microRNA(miRNA)进行分析是了解细胞分子特征的重要工具,既能了解典型功能,也能了解复杂疾病导致的恶性行为。我们提出了一种包含 miRNA 与基因靶标关系的图形混合效应统计模型。我们实施了一种综合通路分析,利用对 miRNA 活性的测量与基因活性的多模态观测(包括基因表达、甲基化和拷贝数变异)进行联合分析。我们将分析结果应用于乳腺癌数据集,并考虑了不同乳腺癌亚型的信号通路活动差异。我们对特定信号通路和 miRNA 整合的影响进行了讨论,并发布了交互式数据可视化,让公众了解我们的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
期刊最新文献
Empirically adjusted fixed-effects meta-analysis methods in genomic studies. A CNN-CBAM-BIGRU model for protein function prediction. A heavy-tailed model for analyzing miRNA-seq raw read counts. Flexible model-based non-negative matrix factorization with application to mutational signatures. Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1