A finite-volume framework to solve the Fokker–Planck equation for fiber orientation kinetics

IF 2.7 2区 工程技术 Q2 MECHANICS Journal of Non-Newtonian Fluid Mechanics Pub Date : 2024-02-12 DOI:10.1016/j.jnnfm.2024.105199
Dogukan T. Karahan, Devesh Ranjan, Cyrus K. Aidun
{"title":"A finite-volume framework to solve the Fokker–Planck equation for fiber orientation kinetics","authors":"Dogukan T. Karahan,&nbsp;Devesh Ranjan,&nbsp;Cyrus K. Aidun","doi":"10.1016/j.jnnfm.2024.105199","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a new solver, FPSolve, is developed to study fiber orientation kinetics using the Fokker–Planck (FP) equation. The solver employs the finite-volume method. The FP equation is discretized on unstructured cubed-sphere grids using the centered differencing scheme (CDS) or a blend of the CDS and the upwind differencing scheme. Time integration is performed using a second-order two-stage explicit Runge–Kutta scheme. Different shape factors and rotational diffusion coefficients are implemented to study suspensions in dilute to semiconcentrated regimes. The verification of the solver is performed for the fiber orientation in simple shear flow up to a Peclet number of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>. Grid independence analysis is presented to show the second-order accuracy of FPSolve. It is demonstrated that the solver does not need stabilization by upwinding. Simulations for semiconcentrated suspensions are performed using the model of Ferec et al. (2014). Time-accurate solutions of the FP equation with explicit time stepping for this model are presented for the first time.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"325 ","pages":"Article 105199"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000156","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a new solver, FPSolve, is developed to study fiber orientation kinetics using the Fokker–Planck (FP) equation. The solver employs the finite-volume method. The FP equation is discretized on unstructured cubed-sphere grids using the centered differencing scheme (CDS) or a blend of the CDS and the upwind differencing scheme. Time integration is performed using a second-order two-stage explicit Runge–Kutta scheme. Different shape factors and rotational diffusion coefficients are implemented to study suspensions in dilute to semiconcentrated regimes. The verification of the solver is performed for the fiber orientation in simple shear flow up to a Peclet number of 105. Grid independence analysis is presented to show the second-order accuracy of FPSolve. It is demonstrated that the solver does not need stabilization by upwinding. Simulations for semiconcentrated suspensions are performed using the model of Ferec et al. (2014). Time-accurate solutions of the FP equation with explicit time stepping for this model are presented for the first time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解纤维定向动力学福克-普朗克方程的有限体积框架
本研究开发了一种新的求解器 FPSolve,用于利用福克-普朗克(FP)方程研究纤维取向动力学。该求解器采用有限体积法。FP 方程在非结构立方体网格上使用中心差分方案(CDS)或中心差分方案与上风差分方案的混合方案进行离散化。时间积分采用二阶两级显式 Runge-Kutta 方案。采用不同的形状系数和旋转扩散系数来研究从稀释到半浓缩状态下的悬浮液。对简单剪切流中纤维取向的求解器进行了验证,最高佩克莱特数为 105。网格独立性分析显示了 FPSolve 的二阶精度。结果表明,求解器不需要通过上卷来稳定。使用 Ferec 等人(2014 年)的模型对半浓缩悬浮液进行了模拟。首次提出了针对该模型的具有显式时间步进的 FP 方程时间精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
期刊最新文献
A lattice Boltzmann flux solver with log-conformation representation for the simulations of viscoelastic flows at high Weissenberg numbers Analysis of the shear thickening behavior of a fumed silica suspension using QL-LAOS approach Suppression and augmentation in vortex shedding frequency due to fluid elasticity The influence of thixotropy on bubble growth in thixotropic yield stress fluids: Insights from numerical simulations Viscoelastic model hierarchy for fiber melt spinning of semi-crystalline polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1