Entry of cannabidiol into the fetal, postnatal and adult rat brain.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY Cell and Tissue Research Pub Date : 2024-05-01 Epub Date: 2024-02-17 DOI:10.1007/s00441-024-03867-w
Georgia Fitzpatrick, Yifan Huang, Fiona Qiu, Mark D Habgood, Robert L Medcalf, Heidi Ho, Katarzyna M Dziegielewska, Norman R Saunders
{"title":"Entry of cannabidiol into the fetal, postnatal and adult rat brain.","authors":"Georgia Fitzpatrick, Yifan Huang, Fiona Qiu, Mark D Habgood, Robert L Medcalf, Heidi Ho, Katarzyna M Dziegielewska, Norman R Saunders","doi":"10.1007/s00441-024-03867-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabidiol is a major component of cannabis but without known psychoactive properties. A wide range of properties have been attributed to it, such as anti-inflammatory, analgesic, anti-cancer, anti-seizure and anxiolytic. However, being a fairly new compound in its purified form, little is known about cannabidiol brain entry, especially during development. Sprague Dawley rats at four developmental ages: embryonic day E19, postnatal day P4 and P12 and non-pregnant adult females were administered intraperitoneal cannabidiol at 10 mg/kg with [<sup>3</sup>H] labelled cannabidiol. To investigate the extent of placental transfer, the drug was injected intravenously into E19 pregnant dams. Levels of [<sup>3</sup>H]-cannabidiol in blood plasma, cerebrospinal fluid and brain were estimated by liquid scintillation counting. Plasma protein binding of cannabidiol was identified by polyacrylamide gel electrophoresis and its bound and unbound fractions measured by ultrafiltration. Using available RNA-sequencing datasets of E19 rat brain, choroid plexus and placenta, as well as P5 and adult brain and choroid plexus, expression of 13 main cannabidiol receptors was analysed. Results showed that cannabidiol rapidly entered both the developing and adult brains. Entry into CSF was more limited. Its transfer across the placenta was substantially restricted as only about 50% of maternal blood plasma cannabidiol concentration was detected in fetal plasma. Albumin was the main, but not exclusive, cannabidiol binding protein at all ages. Several transcripts for cannabidiol receptors were expressed in age- and tissue-specific manner indicating that cannabidiol may have different functional effects in the fetal compared to adult brain.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"177-195"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03867-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cannabidiol is a major component of cannabis but without known psychoactive properties. A wide range of properties have been attributed to it, such as anti-inflammatory, analgesic, anti-cancer, anti-seizure and anxiolytic. However, being a fairly new compound in its purified form, little is known about cannabidiol brain entry, especially during development. Sprague Dawley rats at four developmental ages: embryonic day E19, postnatal day P4 and P12 and non-pregnant adult females were administered intraperitoneal cannabidiol at 10 mg/kg with [3H] labelled cannabidiol. To investigate the extent of placental transfer, the drug was injected intravenously into E19 pregnant dams. Levels of [3H]-cannabidiol in blood plasma, cerebrospinal fluid and brain were estimated by liquid scintillation counting. Plasma protein binding of cannabidiol was identified by polyacrylamide gel electrophoresis and its bound and unbound fractions measured by ultrafiltration. Using available RNA-sequencing datasets of E19 rat brain, choroid plexus and placenta, as well as P5 and adult brain and choroid plexus, expression of 13 main cannabidiol receptors was analysed. Results showed that cannabidiol rapidly entered both the developing and adult brains. Entry into CSF was more limited. Its transfer across the placenta was substantially restricted as only about 50% of maternal blood plasma cannabidiol concentration was detected in fetal plasma. Albumin was the main, but not exclusive, cannabidiol binding protein at all ages. Several transcripts for cannabidiol receptors were expressed in age- and tissue-specific manner indicating that cannabidiol may have different functional effects in the fetal compared to adult brain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大麻二酚进入胎儿、出生后和成年大鼠大脑的情况。
大麻二酚是大麻的一种主要成分,但没有已知的精神活性特性。大麻二酚具有多种特性,如消炎、镇痛、抗癌、抗癫痫和抗焦虑。然而,大麻二酚作为一种纯化形式的新型化合物,人们对其进入大脑的情况知之甚少,尤其是在发育过程中。对胚胎 E19 天、出生后 P4 天和 P12 天的 Sprague Dawley 大鼠以及未怀孕的成年雌性大鼠腹腔注射了 10 毫克/千克的大麻二酚和[3H] 标记的大麻二酚。为了研究胎盘转移的程度,对 E19 怀孕母鼠进行了静脉注射。血浆、脑脊液和大脑中的[3H]-大麻二酚含量通过液体闪烁计数法进行估算。通过聚丙烯酰胺凝胶电泳鉴定血浆蛋白与大麻二酚的结合情况,并通过超滤测量其结合和未结合部分。利用现有的 E19 大鼠大脑、脉络丛和胎盘以及 P5 和成年大鼠大脑和脉络丛的 RNA 序列数据集,分析了 13 种主要大麻二酚受体的表达情况。结果表明,大麻二酚可迅速进入发育中和成年的大脑。进入脑脊液的机会较为有限。由于胎儿血浆中检测到的大麻二酚浓度仅为母体血浆的 50%,因此大麻二酚通过胎盘的转移受到很大限制。在所有年龄段,白蛋白都是主要的大麻二酚结合蛋白,但并非唯一的结合蛋白。一些大麻二酚受体的转录本以特定年龄和组织的方式表达,这表明大麻二酚在胎儿和成人大脑中可能具有不同的功能效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
期刊最新文献
Single cell transcriptomics profiling of the stromal cells in the pathologic association of ribosomal proteins in the ischemic myocardium and epicardial fat. Expanding on roles of pleckstrin homology-like domain family A member 1 protein. Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction. Olfactory and gustatory chemical sensor systems in the African turquoise killifish: Insights from morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1