Antonia Schäfer , Sènan Mickael D'Almeida , Julien Dorier , Nicolas Guex , Jean Villard , Miguel Garcia
{"title":"Comparative assessment of cytometry by time-of-flight and full spectral flow cytometry based on a 33-color antibody panel","authors":"Antonia Schäfer , Sènan Mickael D'Almeida , Julien Dorier , Nicolas Guex , Jean Villard , Miguel Garcia","doi":"10.1016/j.jim.2024.113641","DOIUrl":null,"url":null,"abstract":"<div><p>Mass cytometry and full spectrum flow cytometry have recently emerged as new promising single cell proteomic analysis tools that can be exploited to decipher the extensive diversity of immune cell repertoires and their implication in human diseases. In this study, we evaluated the performance of mass cytometry against full spectrum flow cytometry using an identical 33-color antibody panel on four healthy individuals. Our data revealed an overall high concordance in the quantification of major immune cell populations between the two platforms using a semi-automated clustering approach. We further showed a strong correlation of cluster assignment when comparing manual and automated clustering. Both comparisons revealed minor disagreements in the quantification and assignment of rare cell subpopulations. Our study showed that both single cell proteomic technologies generate highly overlapping results and substantiate that the choice of technology is not a primary factor for successful biological assessment of cell profiles but must be considered in a broader design framework of clinical studies.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"527 ","pages":"Article 113641"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022175924000267/pdfft?md5=35d7b17fbf7b38a4d5950f8c77b4e497&pid=1-s2.0-S0022175924000267-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022175924000267","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mass cytometry and full spectrum flow cytometry have recently emerged as new promising single cell proteomic analysis tools that can be exploited to decipher the extensive diversity of immune cell repertoires and their implication in human diseases. In this study, we evaluated the performance of mass cytometry against full spectrum flow cytometry using an identical 33-color antibody panel on four healthy individuals. Our data revealed an overall high concordance in the quantification of major immune cell populations between the two platforms using a semi-automated clustering approach. We further showed a strong correlation of cluster assignment when comparing manual and automated clustering. Both comparisons revealed minor disagreements in the quantification and assignment of rare cell subpopulations. Our study showed that both single cell proteomic technologies generate highly overlapping results and substantiate that the choice of technology is not a primary factor for successful biological assessment of cell profiles but must be considered in a broader design framework of clinical studies.
期刊介绍:
The Journal of Immunological Methods is devoted to covering techniques for: (1) Quantitating and detecting antibodies and/or antigens. (2) Purifying immunoglobulins, lymphokines and other molecules of the immune system. (3) Isolating antigens and other substances important in immunological processes. (4) Labelling antigens and antibodies. (5) Localizing antigens and/or antibodies in tissues and cells. (6) Detecting, and fractionating immunocompetent cells. (7) Assaying for cellular immunity. (8) Documenting cell-cell interactions. (9) Initiating immunity and unresponsiveness. (10) Transplanting tissues. (11) Studying items closely related to immunity such as complement, reticuloendothelial system and others. (12) Molecular techniques for studying immune cells and their receptors. (13) Imaging of the immune system. (14) Methods for production or their fragments in eukaryotic and prokaryotic cells.
In addition the journal will publish articles on novel methods for analysing the organization, structure and expression of genes for immunologically important molecules such as immunoglobulins, T cell receptors and accessory molecules involved in antigen recognition, processing and presentation. Submitted full length manuscripts should describe new methods of broad applicability to immunology and not simply the application of an established method to a particular substance - although papers describing such applications may be considered for publication as a short Technical Note. Review articles will also be published by the Journal of Immunological Methods. In general these manuscripts are by solicitation however anyone interested in submitting a review can contact the Reviews Editor and provide an outline of the proposed review.