Evidence for Multiscale Multiplexed Representation of Visual Features in EEG

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2024-02-16 DOI:10.1162/neco_a_01649
{"title":"Evidence for Multiscale Multiplexed Representation of Visual Features in EEG","authors":"Hamid Karimi-Rouzbahani","doi":"10.1162/neco_a_01649","DOIUrl":null,"url":null,"abstract":"Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 3","pages":"412-436"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535055/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电图中视觉特征多尺度复用表征的证据
不同的神经过程(如感觉和记忆过程)通常在不同的神经激活时间尺度上进行编码。动物研究表明,这种多尺度编码策略也适用于单个过程的单个成分,如感觉编码中多特征刺激的单个特征。然而,这种编码策略在人脑中的通用性仍不清楚。我们想知道视觉刺激的单个特征是否在不同的时间尺度上进行编码。我们将多尺度时间分辨解码方法应用于从人类受试者身上收集到的光栅视觉刺激脑电图(EEG),以估计单个刺激特征的时间尺度。我们观察到,刺激物的方向和颜色以较短的时间尺度编码,而相同刺激物的空间频率和对比度则以较长的时间尺度编码。刺激物的特征在试验过程中出现在时间上重叠的窗口中,这支持了多路编码策略。这些结果为人类视觉系统的多路复用、多尺度编码策略提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Gradual Domain Adaptation via Normalizing Flows. Improving Recall Accuracy in Sparse Associative Memories That Use Neurogenesis. Replay as a Basis for Backpropagation Through Time in the Brain. Toward a Free-Response Paradigm of Decision-Making in Spiking Neural Networks. Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1