The genome of a globally invasive passerine, the common myna, Acridotheres tristis.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY DNA Research Pub Date : 2024-01-01 DOI:10.1093/dnares/dsae005
Katarina C Stuart, Rebecca N Johnson, Richard E Major, Kamolphat Atsawawaranunt, Kyle M Ewart, Lee A Rollins, Anna W Santure, Annabel Whibley
{"title":"The genome of a globally invasive passerine, the common myna, Acridotheres tristis.","authors":"Katarina C Stuart, Rebecca N Johnson, Richard E Major, Kamolphat Atsawawaranunt, Kyle M Ewart, Lee A Rollins, Anna W Santure, Annabel Whibley","doi":"10.1093/dnares/dsae005","DOIUrl":null,"url":null,"abstract":"<p><p>In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsae005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有全球入侵性的雀形目鸟类--普通贻贝(Acridotheres tristis)的基因组。
在全球气候变化的时代,生物多样性保护受到越来越多的关注。遗传工具和方法对保护工作大有帮助,它们试图了解遗传多样性的模式,以及这些模式如何影响物种的健康和在未来气候条件下的生存能力。入侵物种为研究适应潜力方面的问题提供了重要的模型系统,特别是遗传多样性和有效种群规模的变化如何与新的选择机制相互作用。普通杓鹬(Acridotheres tristis)是一种全球入侵的雀形目鸟类,是研究低多样性种群持久性和生物入侵机理的极佳模式物种。为了支持对该物种入侵遗传学的研究,我们介绍了普通杓鹬的基因组组装。我们描述了该物种的基因组图谱,包括基因组范围内的等位基因多样性、甲基化、重复和重组率,以及对基因家族进化的研究。最后,我们利用人口统计学分析发现,在最近两次冰川期之间,一些原生区域的种群数量急剧增加,并揭示了遗传瓶颈对人口统计学分析的人为影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
期刊最新文献
Chromosome-level genome assembly of Pontederia cordata L. provides insights into its rapid adaptation and variation of flower colors. Genome-resolved analysis of Serratia marcescens SMTT infers niche specialization as a hydrocarbon-degrader. A fully phased, chromosome-scale genome of sugar beet line FC309 enables the discovery of Fusarium yellows resistance QTL. The haplotype-phased genome assembly facilitated the deciphering of the bud dormancy-related QTLs in Prunus mume. Near-complete telomere-to-telomere de novo genome assembly in Egyptian clover (Trifolium alexandrinum).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1