Research on intelligent vehicle Traffic Flow control algorithm based on data mining

Lihua Cheng , Ke Sun
{"title":"Research on intelligent vehicle Traffic Flow control algorithm based on data mining","authors":"Lihua Cheng ,&nbsp;Ke Sun","doi":"10.1016/j.ijin.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic Congestion (TC) is increasing due to urban growth and vehicle numbers, rendering the development of cities and people's well-being difficult. Traffic Prediction (TP) and control systems have been required to improve Traffic Flow (TF) and reduce TC because standard methods are unsuitable. The paper proposes an innovative method for traffic control using the Dynamic Zone Segmentation Algorithm (DZSA) to solve this significant issue. The algorithm uses real-time data and road conditions to partition city traffic into manageable units, enhancing the adaptability and accuracy of Traffic Prediction (TP) performance. Applying DZSA, the recommended Long Short-Term Memory + Bayesian Structural Time Series (LSTM + BSTS) learning model optimizes TP by integrating the best features of conventional and Machine Learning (ML) methods. The model optimized quality performance when experimentally tested against other benchmark models using metrics like Mean Absolute Error, Mean Absolute Scaled Error, Accuracy Percent, Root Mean Squared Error, and Mean Absolute Percent Error. The recommended model, LSTM + BSTS, shows a minimal error rate of 6.68%, indicating its success.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 92-100"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000101/pdfft?md5=c87971d1e870a72ddbce209838375d01&pid=1-s2.0-S2666603024000101-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic Congestion (TC) is increasing due to urban growth and vehicle numbers, rendering the development of cities and people's well-being difficult. Traffic Prediction (TP) and control systems have been required to improve Traffic Flow (TF) and reduce TC because standard methods are unsuitable. The paper proposes an innovative method for traffic control using the Dynamic Zone Segmentation Algorithm (DZSA) to solve this significant issue. The algorithm uses real-time data and road conditions to partition city traffic into manageable units, enhancing the adaptability and accuracy of Traffic Prediction (TP) performance. Applying DZSA, the recommended Long Short-Term Memory + Bayesian Structural Time Series (LSTM + BSTS) learning model optimizes TP by integrating the best features of conventional and Machine Learning (ML) methods. The model optimized quality performance when experimentally tested against other benchmark models using metrics like Mean Absolute Error, Mean Absolute Scaled Error, Accuracy Percent, Root Mean Squared Error, and Mean Absolute Percent Error. The recommended model, LSTM + BSTS, shows a minimal error rate of 6.68%, indicating its success.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘的智能车辆交通流量控制算法研究
随着城市的发展和车辆的增多,交通拥堵(TC)现象日益严重,给城市的发展和人民的福祉带来了困难。由于标准方法不适合改善交通流量(TF)和减少交通拥堵,因此需要交通预测(TP)和控制系统。本文利用动态区域分割算法(DZSA)提出了一种创新的交通控制方法,以解决这一重大问题。该算法利用实时数据和路况将城市交通划分为可管理的单元,提高了交通预测(TP)性能的适应性和准确性。应用 DZSA,推荐的长短期记忆 + 贝叶斯结构时间序列(LSTM + BSTS)学习模型通过整合传统方法和机器学习(ML)方法的最佳特性来优化交通预测。通过使用平均绝对误差、平均绝对缩放误差、准确率百分比、均方根误差和平均绝对误差百分比等指标对其他基准模型进行实验测试,该模型优化了质量性能。推荐模型 LSTM + BSTS 的误差率最小,仅为 6.68%,表明该模型是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Personal internet of things networks: An overview of 3GPP architecture, applications, key technologies, and future trends Machine Learning-enhanced loT and Wireless Sensor Networks for predictive analysis and maintenance in wind turbine systems Research on secure Official Document Management and intelligent Information Retrieval System based on recommendation algorithm A method of vehicle networking environment information sharing based on distributed fountain code Introducing a high-throughput energy-efficient anti-collision (HT-EEAC) protocol for RFID systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1