Experimental study of the effects of pin geometry, advancing speed and D/d ratio on the mechanical and microstructural properties of 6061 aluminum alloy under the friction stir processing

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2024-02-15 DOI:10.1016/j.jajp.2024.100205
Ali Alavi Nia, Reza Amirifar
{"title":"Experimental study of the effects of pin geometry, advancing speed and D/d ratio on the mechanical and microstructural properties of 6061 aluminum alloy under the friction stir processing","authors":"Ali Alavi Nia,&nbsp;Reza Amirifar","doi":"10.1016/j.jajp.2024.100205","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this research is to investigate the effect of different pin geometries, the ratio of shoulder diameter to pin diameter, and advancing speed on the mechanical and microstructural properties of the specimens fabricated from 6061 aluminum sheet by friction stir processing. Cylindrical, frustum and prisms with triangular section (in three sizes), square and hexagonal cross-sections pins were prepared. The diameter of the shoulder was considered 18 and the diameter of the peripheral circle of all the pins was considered 6 mm. Advancing speeds of 14, 20, and 28 mm/min and rotational speed of 1000 rpm were considered. The smallest grain size was obtained using a pin with square cross-section. As the advancing speed increased, the average grain size decreased and its lowest value was observed at the advancing speed of 28 mm/min. In addition, the best mechanical properties were observed in the specimens fabricated by square cross-section pin and frustum pin. As the advancing speed increased, the ultimate strength of all specimens and the yield stress of most specimens increased. The highest hardness was observed in the specimens fabricated by square cross-section pin and the lowest hardness was observed using cylindrical pin. Also, in specimens fabricated by triangular cross-section pins, by decreasing the ratio of the shoulder diameter to the pin diameter, the ultimate strength and hardness increased and the elongation decreased.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"9 ","pages":"Article 100205"},"PeriodicalIF":3.8000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000220/pdfft?md5=aa8df2ce1b5f73107e29bcc0d157164f&pid=1-s2.0-S2666330924000220-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this research is to investigate the effect of different pin geometries, the ratio of shoulder diameter to pin diameter, and advancing speed on the mechanical and microstructural properties of the specimens fabricated from 6061 aluminum sheet by friction stir processing. Cylindrical, frustum and prisms with triangular section (in three sizes), square and hexagonal cross-sections pins were prepared. The diameter of the shoulder was considered 18 and the diameter of the peripheral circle of all the pins was considered 6 mm. Advancing speeds of 14, 20, and 28 mm/min and rotational speed of 1000 rpm were considered. The smallest grain size was obtained using a pin with square cross-section. As the advancing speed increased, the average grain size decreased and its lowest value was observed at the advancing speed of 28 mm/min. In addition, the best mechanical properties were observed in the specimens fabricated by square cross-section pin and frustum pin. As the advancing speed increased, the ultimate strength of all specimens and the yield stress of most specimens increased. The highest hardness was observed in the specimens fabricated by square cross-section pin and the lowest hardness was observed using cylindrical pin. Also, in specimens fabricated by triangular cross-section pins, by decreasing the ratio of the shoulder diameter to the pin diameter, the ultimate strength and hardness increased and the elongation decreased.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搅拌摩擦加工中销轴几何形状、推进速度和 D/d 比对 6061 铝合金机械和微观结构特性影响的实验研究
本研究旨在探讨不同销钉几何形状、肩部直径与销钉直径之比以及推进速度对 6061 铝板摩擦搅拌加工试样的机械和微观结构特性的影响。制备了圆柱形、方形和六角形截面的三角形截面(三种尺寸)、方形和六角形截面销钉。栓肩直径为 18 毫米,所有栓的周边圆直径均为 6 毫米。推进速度为 14、20 和 28 毫米/分钟,旋转速度为 1000 转/分钟。使用横截面为正方形的大头针得到的晶粒尺寸最小。随着推进速度的增加,平均晶粒尺寸减小,最低值出现在推进速度为 28 毫米/分钟时。此外,用方形截面销钉和圆锥销钉制作的试样具有最佳的机械性能。随着推进速度的增加,所有试样的极限强度和大多数试样的屈服应力都有所增加。使用方形截面销制作的试样硬度最高,使用圆柱销制作的试样硬度最低。此外,在使用三角形截面销钉制作的试样中,通过减小肩部直径与销钉直径之比,极限强度和硬度增加,而伸长率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Improving the joint strength of thermoplastic composites joined by press joining using laser-based surface treatment Characterization of physical metallurgy of quenching and partitioning steel in pulsed resistance spot welding: A simulation-aided study Influence of the material properties on the clinching process and the resulting load-bearing capacity of the joint Enhancement of joint quality for laser welded dissimilar material cell-to-busbar joints using meta model-based multi-objective optimization Joining by forming of bi-material collector coins with rotating elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1