Sublinear Time Eigenvalue Approximation via Random Sampling

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Algorithmica Pub Date : 2024-02-12 DOI:10.1007/s00453-024-01208-5
Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco, Archan Ray
{"title":"Sublinear Time Eigenvalue Approximation via Random Sampling","authors":"Rajarshi Bhattacharjee,&nbsp;Gregory Dexter,&nbsp;Petros Drineas,&nbsp;Cameron Musco,&nbsp;Archan Ray","doi":"10.1007/s00453-024-01208-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem of approximating the eigenspectrum of a symmetric matrix <span>\\(\\textbf{A} \\in \\mathbb {R}^{n \\times n}\\)</span> with bounded entries (i.e., <span>\\(\\Vert \\textbf{A}\\Vert _{\\infty } \\le 1\\)</span>). We present a simple sublinear time algorithm that approximates all eigenvalues of <span>\\(\\textbf{A}\\)</span> up to additive error <span>\\(\\pm \\epsilon n\\)</span> using those of a randomly sampled <span>\\({\\tilde{O}}\\left( \\frac{\\log ^3 n}{\\epsilon ^3}\\right) \\times {{\\tilde{O}}}\\left( \\frac{\\log ^3 n}{\\epsilon ^3}\\right) \\)</span> principal submatrix. Our result can be viewed as a concentration bound on the complete eigenspectrum of a random submatrix, significantly extending known bounds on just the singular values (the magnitudes of the eigenvalues). We give improved error bounds of <span>\\(\\pm \\epsilon \\sqrt{\\text {nnz}(\\textbf{A})}\\)</span> and <span>\\(\\pm \\epsilon \\Vert \\textbf{A}\\Vert _F\\)</span> when the rows of <span>\\(\\textbf{A}\\)</span> can be sampled with probabilities proportional to their sparsities or their squared <span>\\(\\ell _2\\)</span> norms respectively. Here <span>\\(\\text {nnz}(\\textbf{A})\\)</span> is the number of non-zero entries in <span>\\(\\textbf{A}\\)</span> and <span>\\(\\Vert \\textbf{A}\\Vert _F\\)</span> is its Frobenius norm. Even for the strictly easier problems of approximating the singular values or testing the existence of large negative eigenvalues (Bakshi, Chepurko, and Jayaram, FOCS ’20), our results are the first that take advantage of non-uniform sampling to give improved error bounds. From a technical perspective, our results require several new eigenvalue concentration and perturbation bounds for matrices with bounded entries. Our non-uniform sampling bounds require a new algorithmic approach, which judiciously zeroes out entries of a randomly sampled submatrix to reduce variance, before computing the eigenvalues of that submatrix as estimates for those of <span>\\(\\textbf{A}\\)</span>. We complement our theoretical results with numerical simulations, which demonstrate the effectiveness of our algorithms in practice.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 6","pages":"1764 - 1829"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01208-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of approximating the eigenspectrum of a symmetric matrix \(\textbf{A} \in \mathbb {R}^{n \times n}\) with bounded entries (i.e., \(\Vert \textbf{A}\Vert _{\infty } \le 1\)). We present a simple sublinear time algorithm that approximates all eigenvalues of \(\textbf{A}\) up to additive error \(\pm \epsilon n\) using those of a randomly sampled \({\tilde{O}}\left( \frac{\log ^3 n}{\epsilon ^3}\right) \times {{\tilde{O}}}\left( \frac{\log ^3 n}{\epsilon ^3}\right) \) principal submatrix. Our result can be viewed as a concentration bound on the complete eigenspectrum of a random submatrix, significantly extending known bounds on just the singular values (the magnitudes of the eigenvalues). We give improved error bounds of \(\pm \epsilon \sqrt{\text {nnz}(\textbf{A})}\) and \(\pm \epsilon \Vert \textbf{A}\Vert _F\) when the rows of \(\textbf{A}\) can be sampled with probabilities proportional to their sparsities or their squared \(\ell _2\) norms respectively. Here \(\text {nnz}(\textbf{A})\) is the number of non-zero entries in \(\textbf{A}\) and \(\Vert \textbf{A}\Vert _F\) is its Frobenius norm. Even for the strictly easier problems of approximating the singular values or testing the existence of large negative eigenvalues (Bakshi, Chepurko, and Jayaram, FOCS ’20), our results are the first that take advantage of non-uniform sampling to give improved error bounds. From a technical perspective, our results require several new eigenvalue concentration and perturbation bounds for matrices with bounded entries. Our non-uniform sampling bounds require a new algorithmic approach, which judiciously zeroes out entries of a randomly sampled submatrix to reduce variance, before computing the eigenvalues of that submatrix as estimates for those of \(\textbf{A}\). We complement our theoretical results with numerical simulations, which demonstrate the effectiveness of our algorithms in practice.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过随机抽样实现次线性时间特征值逼近
我们研究的问题是近似具有有界条目(即 \(\Vert \textbf{A}\Vert _\{infty } \le 1\)) 的对称矩阵 \(\textbf{A} \in \mathbb {R}^{n \times n}\) 的特征谱。我们提出了一种简单的亚线性时间算法,它可以用随机采样的times {\{tilde{O}}}\left(\frac\{log ^3 n}{\epsilon ^3}\right) 主子矩阵。我们的结果可以看作是对随机子矩阵完整特征谱的集中约束,极大地扩展了对奇异值(特征值的大小)的已知约束。当 \(\textbf{A}\) 的行可以分别以与它们的稀疏度或它们的平方(\ell _2)规范成比例的概率进行采样时,我们给出了 \(\pm \epsilon \sqrt\text {nnz}(\textbf{A})}\) 和 \(\pm \epsilon \Vert \textbf{A}\Vert _F\)的改进误差约束。这里,\(\text {nnz}(\textbf{A})\)是\(\textbf{A}\)中的非零条目数,\(\Vert \textbf{A}\Vert _F\)是它的弗罗贝尼斯规范。即使对于近似奇异值或检验是否存在大负特征值这种严格意义上更容易的问题(Bakshi, Chepurko, and Jayaram, FOCS '20),我们的结果也是第一个利用非均匀采样给出改进误差边界的结果。从技术角度看,我们的结果要求对有界项的矩阵进行若干新的特征值集中和扰动约束。我们的非均匀抽样边界需要一种新的算法方法,即在计算该子矩阵的特征值作为 \(\textbf{A}\) 的估计值之前,明智地将随机抽样子矩阵的条目清零以减少方差。我们用数值模拟补充了理论结果,证明了我们的算法在实践中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
期刊最新文献
Energy Constrained Depth First Search Recovering the Original Simplicity: Succinct and Exact Quantum Algorithm for the Welded Tree Problem Permutation-constrained Common String Partitions with Applications Reachability of Fair Allocations via Sequential Exchanges On Flipping the Fréchet Distance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1