{"title":"Feasibility study to characterize the production of antineutrons in high energy pp collisions through charge exchange interactions","authors":"F Lugo-Porras, D M Gomez-Coral, A Menchaca-Rocha","doi":"10.1088/1361-6471/ad1dc1","DOIUrl":null,"url":null,"abstract":"Simulations to evaluate the feasibility of antineutron identification and kinematic characterization via the hadronic charge exchange (CEX) interaction <inline-formula>\n<tex-math>\n<?CDATA $n\\,+\\,\\bar{n}\\,\\to \\,p\\,+\\,\\bar{p}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>n</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>+</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mover accent=\"true\"><mml:mi>n</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>→</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>p</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>+</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mover accent=\"true\"><mml:mi>p</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> are reported. The target neutrons are those composing the silicon nuclei of which inner tracking devices present in the Large Hadron Collider experiments ALICE, ATLAS, and CMS. Simulations of <italic toggle=\"yes\">pp</italic> collisions in PYTHIA were carried out at different energies to investigate <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> production and energy spectra. These simulations produced a decreasing power-law <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> energy spectra. Then, two types of GEANT4 simulations were performed, placing an <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> point source at the ALICE primary vertex, as a working example. In the first simulation, the kinetic energy <italic toggle=\"yes\">E</italic>\n<sub>\n<italic toggle=\"yes\">k</italic>\n</sub> was kept at an arbitrary (1 GeV) fix value to develop an <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> identification and kinematics reconstruction protocol. The second GEANT4 simulation used the resulting PYTHIA at <inline-formula>\n<tex-math>\n<?CDATA $\\sqrt{{s}_{{pp}}}\\,=\\,13$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">pp</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>=</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mn>13</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> TeV <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> energy spectra. In both GEANT4 simulations, the occurrence of CEX interactions was identified by the unique outgoing <inline-formula>\n<tex-math>\n<?CDATA $\\bar{p}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The simplified simulation allowed to estimate a 0.11% CEX-interaction identification efficiency at <italic toggle=\"yes\">E</italic>\n<sub>\n<italic toggle=\"yes\">k</italic>\n</sub> = 1 GeV. The <italic toggle=\"yes\">p</italic> CEX-partner identification is challenging because of the presence of silicon nucleus-fragmentation protons. Momentum correlations between the <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and all possible <inline-formula>\n<tex-math>\n<?CDATA $\\bar{p}p$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mi>p</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn10.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> pairs showed that <italic toggle=\"yes\">p</italic> CEX-partner identification and <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn11.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> kinematics reconstruction corresponds to minimal momentum-loss events. The use of inner tracking system d<italic toggle=\"yes\">E</italic>/d<italic toggle=\"yes\">x</italic> information is found to improve <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn12.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> identification and kinematic characterization in both GEANT4 simulations. The final protocol applied to the realistic GEANT4 simulation resulted in a <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn13.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> identification and kinematic reconstruction efficiency of 0.006%, based solely on <inline-formula>\n<tex-math>\n<?CDATA $\\bar{p}p$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mi>p</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn14.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> pair observable. If applied to the ALICE minimum-bias RUN2 <italic toggle=\"yes\">pp</italic> at <inline-formula>\n<tex-math>\n<?CDATA $\\sqrt{{s}_{{pp}}}=13$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">pp</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn15.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> TeV data sample, this technique is found to have the potential to identify and reconstruct the kinematics of <inline-formula>\n<tex-math>\n<?CDATA $4.3\\times {10}^{8}\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>4.3</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>8</mml:mn></mml:mrow></mml:msup><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn16.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>'s, illustrating the feasibility of the method.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"153 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad1dc1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Simulations to evaluate the feasibility of antineutron identification and kinematic characterization via the hadronic charge exchange (CEX) interaction n+n¯→p+p¯ are reported. The target neutrons are those composing the silicon nuclei of which inner tracking devices present in the Large Hadron Collider experiments ALICE, ATLAS, and CMS. Simulations of pp collisions in PYTHIA were carried out at different energies to investigate n¯ production and energy spectra. These simulations produced a decreasing power-law n¯ energy spectra. Then, two types of GEANT4 simulations were performed, placing an n¯ point source at the ALICE primary vertex, as a working example. In the first simulation, the kinetic energy Ek was kept at an arbitrary (1 GeV) fix value to develop an n¯ identification and kinematics reconstruction protocol. The second GEANT4 simulation used the resulting PYTHIA at spp=13 TeV n¯ energy spectra. In both GEANT4 simulations, the occurrence of CEX interactions was identified by the unique outgoing p¯. The simplified simulation allowed to estimate a 0.11% CEX-interaction identification efficiency at Ek = 1 GeV. The p CEX-partner identification is challenging because of the presence of silicon nucleus-fragmentation protons. Momentum correlations between the n¯ and all possible p¯p pairs showed that p CEX-partner identification and n¯ kinematics reconstruction corresponds to minimal momentum-loss events. The use of inner tracking system dE/dx information is found to improve n¯ identification and kinematic characterization in both GEANT4 simulations. The final protocol applied to the realistic GEANT4 simulation resulted in a n¯ identification and kinematic reconstruction efficiency of 0.006%, based solely on p¯p pair observable. If applied to the ALICE minimum-bias RUN2 pp at spp=13 TeV data sample, this technique is found to have the potential to identify and reconstruct the kinematics of 4.3×108n¯'s, illustrating the feasibility of the method.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.