COOLING AND CRYSTALLIZATION OF MOLTEN ALUMINUM ALLOY DROPS IN WATER

IF 0.5 4区 工程技术 Q4 MECHANICS Journal of Applied Mechanics and Technical Physics Pub Date : 2024-02-13 DOI:10.1134/S0021894423060019
M. V. Zharov
{"title":"COOLING AND CRYSTALLIZATION OF MOLTEN ALUMINUM ALLOY DROPS IN WATER","authors":"M. V. Zharov","doi":"10.1134/S0021894423060019","DOIUrl":null,"url":null,"abstract":"<p>The physical processes of crystallization of melt drops in water were studied using the drop granulation and melt centrifugation methods. A mathematical model was developed to determine the cooling and crystallization rates and structural dendritic parameter for aluminum alloy granules based on the initial data of the process, the diameter of melt drops, and cooling conditions. Predicting the dendritic parameter of the microstructure of granules makes it possible to predict the level of microstructure dispersion and hence the strength properties of the granulate material. The model parameters take into account the drop speed, features of heat removal processes, and the temperature dependence of the thermophysical parameters of the media. An application program implementing the developed mathematical model was developed. The developed mathematical model was implemented using the Microsoft Visual C++ programming language. The mathematical model was tested for the granulation of high-alloyed aluminum alloys (D1 and D16 alloys of the Al–Cu–Mg system, and B95 and B96Ts alloys of the Al–Zn–Mg–Cu system) obtained by centrifugal melt spraying and the drop method with cooling in water. Crystallization rate in full-scale samples was measured based on an analysis of the structural dendritic parameter of the material. Analysis of the calculated values of the dendritic parameter and its measurements for real granule samples shows good convergence of the simulation and measurement results.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"64 6","pages":"943 - 953"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894423060019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The physical processes of crystallization of melt drops in water were studied using the drop granulation and melt centrifugation methods. A mathematical model was developed to determine the cooling and crystallization rates and structural dendritic parameter for aluminum alloy granules based on the initial data of the process, the diameter of melt drops, and cooling conditions. Predicting the dendritic parameter of the microstructure of granules makes it possible to predict the level of microstructure dispersion and hence the strength properties of the granulate material. The model parameters take into account the drop speed, features of heat removal processes, and the temperature dependence of the thermophysical parameters of the media. An application program implementing the developed mathematical model was developed. The developed mathematical model was implemented using the Microsoft Visual C++ programming language. The mathematical model was tested for the granulation of high-alloyed aluminum alloys (D1 and D16 alloys of the Al–Cu–Mg system, and B95 and B96Ts alloys of the Al–Zn–Mg–Cu system) obtained by centrifugal melt spraying and the drop method with cooling in water. Crystallization rate in full-scale samples was measured based on an analysis of the structural dendritic parameter of the material. Analysis of the calculated values of the dendritic parameter and its measurements for real granule samples shows good convergence of the simulation and measurement results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔融铝合金滴在水中的冷却和结晶
摘要 采用熔滴造粒法和熔体离心法研究了熔滴在水中结晶的物理过程。根据该过程的初始数据、熔滴直径和冷却条件,建立了一个数学模型来确定铝合金颗粒的冷却和结晶速率以及结构树枝状参数。通过预测颗粒微观结构的树枝状参数,可以预测微观结构的分散程度,进而预测颗粒材料的强度特性。模型参数考虑到了落料速度、散热过程的特征以及介质热物理参数的温度依赖性。我们开发了一个应用软件来实现所开发的数学模型。所开发的数学模型使用 Microsoft Visual C++ 编程语言实现。该数学模型针对高合金铝合金(铝-铜-镁体系的 D1 和 D16 合金,以及铝-锌-镁-铜体系的 B95 和 B96Ts 合金)的造粒进行了测试,这些合金是通过离心熔融喷涂法和在水中冷却的滴落法获得的。全尺寸样品的结晶速率是根据材料的树枝状结构参数分析测得的。对树枝状参数的计算值和实际颗粒样品的测量值进行的分析表明,模拟和测量结果趋同性良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
期刊最新文献
STATE OF ART AND PROSPECTS OF INVESTIGATING THE POSSIBILITY OF TURBULENT BOUNDARY LAYER CONTROL BY AIR BLOWING ON A BODY OF REVOLUTION (REVIEW) REACTIVE HOT PRESSING OF B4C–CrB2 CERAMICS AND ITS MECHANICAL PROPERTIES SOLUTION TO A COUPLED PROBLEM OF THERMOMECHANICAL CONTACT OF FUEL ELEMENTS HYDRODYNAMICS OF NON-MAGNETIC DROPLETS IN MAGNETIC FLUIDS IN MICROFLUIDIC CHIPS UNDER THE INFLUENCE OF INHOMOGENEOUS MAGNETIC FIELDS DESIGN, ADJUSTMENT, AND MODE RESEARCH OF LOW-EMISSION BURNER FOR FUEL COMBUSTION IN A SUPERHEATED STEAM JET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1