{"title":"Elevated litterfall phosphorus reduces litter and soil organic matter pools in exotic-dominated novel forests in Singapore","authors":"Aloysius Teo, Theodore A. Evans, Ryan A. Chisholm","doi":"10.1017/s0266467424000026","DOIUrl":null,"url":null,"abstract":"The estimation of leaf litter turnover is often limited to early-stage decomposition using unrepresentative models and litter types. In tropical secondary forests, particularly exotic-dominated novel forests, the characterisation of litter turnover remains poor. This study estimated the annual turnover of <jats:italic>in-situ</jats:italic> leaf litter across four forest successional types in Singapore using a Weibull residence time model. Litter turnover and nutrient dynamics diverged between young secondary and old-growth forests. In particular, within novel forests, annual phosphorus return via leaf litterfall was three times that of primary forests, while the mass loss of <jats:italic>in-situ</jats:italic> leaf litter was highest among all forest successional types, estimated at 92.8% annually with a mean residence time of 176 days, resulting in a litter pool size a third that of primary forests. Our findings suggest that tree species composition and species-specific effects shaped the observed variations in litter turnover and nutrient dynamics across forest successional types and forest stands, whereas tree species richness, canopy structure, soil nutrient levels, and microclimate were found to be non-predictors. Taken together, our study provides an insight into litter turnover in human-modified tropical landscapes increasingly characterised by novel forests, potentially leading to a reduction in surface litter and soil organic carbon pools.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/s0266467424000026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The estimation of leaf litter turnover is often limited to early-stage decomposition using unrepresentative models and litter types. In tropical secondary forests, particularly exotic-dominated novel forests, the characterisation of litter turnover remains poor. This study estimated the annual turnover of in-situ leaf litter across four forest successional types in Singapore using a Weibull residence time model. Litter turnover and nutrient dynamics diverged between young secondary and old-growth forests. In particular, within novel forests, annual phosphorus return via leaf litterfall was three times that of primary forests, while the mass loss of in-situ leaf litter was highest among all forest successional types, estimated at 92.8% annually with a mean residence time of 176 days, resulting in a litter pool size a third that of primary forests. Our findings suggest that tree species composition and species-specific effects shaped the observed variations in litter turnover and nutrient dynamics across forest successional types and forest stands, whereas tree species richness, canopy structure, soil nutrient levels, and microclimate were found to be non-predictors. Taken together, our study provides an insight into litter turnover in human-modified tropical landscapes increasingly characterised by novel forests, potentially leading to a reduction in surface litter and soil organic carbon pools.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.