V. E. Gromov, Yu. F. Ivanov, M. O. Efimov, Yu. A. Shliarova
{"title":"Structure and Properties of a High-Entropy AlCrFeCoNi Alloy after Treatment with an Electron–Ion Plasma","authors":"V. E. Gromov, Yu. F. Ivanov, M. O. Efimov, Yu. A. Shliarova","doi":"10.1134/S1028335823070029","DOIUrl":null,"url":null,"abstract":"<p>With the help of wire arc additive manufacturing, a high-entropy alloy of AlCrFeCoNi was prepared: of a non-equiatomic composition, on which a B + Cr film with a thickness of ~1 μm was deposited by plasma-assisted RF sputtering. Subsequent processing consisted in electron-beam irradiation of the surface with the following parameters: energy density 20–40 J/cm<sup>2</sup>, pulse duration 200 μs, frequency 0.3 s<sup>–1</sup>, and number of pulses 3. A quasi-periodic distribution of chemical elements (at %) 33.4 Al, 8.3 Cr, 17.1 Fe, 5.4 Co, and 35.7 Ni is established. It is shown that, at the energy density of the electron beam <i>E</i><sub>s</sub> = 20 J/cm<sup>2</sup>, the microhardness increases by a factor of two and the wear resistance by a factor of five, and the friction coefficient decreases by a factor of 1.3. High-speed crystallization of the surface layer leads to the formation of a subgrain structure with subgrain sizes (150–200 nm). The increase in strength and tribological properties during electron-beam processing is interpreted taking into account the reduction in grain size, the formation of chromium and aluminum oxyborides, and the formation of a solid solution of boron incorporation into the HEA crystal lattice.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":"68 7","pages":"205 - 208"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335823070029","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the help of wire arc additive manufacturing, a high-entropy alloy of AlCrFeCoNi was prepared: of a non-equiatomic composition, on which a B + Cr film with a thickness of ~1 μm was deposited by plasma-assisted RF sputtering. Subsequent processing consisted in electron-beam irradiation of the surface with the following parameters: energy density 20–40 J/cm2, pulse duration 200 μs, frequency 0.3 s–1, and number of pulses 3. A quasi-periodic distribution of chemical elements (at %) 33.4 Al, 8.3 Cr, 17.1 Fe, 5.4 Co, and 35.7 Ni is established. It is shown that, at the energy density of the electron beam Es = 20 J/cm2, the microhardness increases by a factor of two and the wear resistance by a factor of five, and the friction coefficient decreases by a factor of 1.3. High-speed crystallization of the surface layer leads to the formation of a subgrain structure with subgrain sizes (150–200 nm). The increase in strength and tribological properties during electron-beam processing is interpreted taking into account the reduction in grain size, the formation of chromium and aluminum oxyborides, and the formation of a solid solution of boron incorporation into the HEA crystal lattice.
期刊介绍:
Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.