Internally Balanced Elasticity Tensor in Terms of Principal Stretches

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Elasticity Pub Date : 2024-02-05 DOI:10.1007/s10659-024-10049-w
Ashraf Hadoush
{"title":"Internally Balanced Elasticity Tensor in Terms of Principal Stretches","authors":"Ashraf Hadoush","doi":"10.1007/s10659-024-10049-w","DOIUrl":null,"url":null,"abstract":"<p>A new scheme for hyperelastic material is developed based on applying the argument of calculus variation to two-factor multiplicative decomposition of the deformation gradient. Then, Piola–Kirchhoff stress is coupled with internal balance equation. Strain energy function is expressed in terms of principal invariants of the deformation gradient decomposed counterparts. Recent work introduces a strain energy function in terms of principal stretches of the deformation gradient multiplicatively decomposed counterparts directly. Hence, a new reformulation of Piola–Kirchhoff stress and internal balance equation are provided. This work focuses on developing the mathematical framework to calculate the elasticity tensor for material model formulated in terms of decomposed principal stretches. This paves the way for future implementation of these classes of material model in FE formulation.</p>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10659-024-10049-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new scheme for hyperelastic material is developed based on applying the argument of calculus variation to two-factor multiplicative decomposition of the deformation gradient. Then, Piola–Kirchhoff stress is coupled with internal balance equation. Strain energy function is expressed in terms of principal invariants of the deformation gradient decomposed counterparts. Recent work introduces a strain energy function in terms of principal stretches of the deformation gradient multiplicatively decomposed counterparts directly. Hence, a new reformulation of Piola–Kirchhoff stress and internal balance equation are provided. This work focuses on developing the mathematical framework to calculate the elasticity tensor for material model formulated in terms of decomposed principal stretches. This paves the way for future implementation of these classes of material model in FE formulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以主伸展为单位的内部平衡弹性张量
根据对变形梯度的双因子乘法分解应用微积分变化的论证,为超弹性材料开发了一种新方案。然后,将 Piola-Kirchhoff 应力与内部平衡方程耦合。应变能函数用变形梯度分解对应的主不变式表示。最近的工作直接引入了以变形梯度乘法分解对应方的主拉伸为条件的应变能函数。因此,对皮奥拉-基尔霍夫应力和内部平衡方程进行了新的重新表述。这项工作的重点是开发数学框架,以计算以分解主拉伸为条件的材料模型的弹性张量。这为将来在有限元计算中实施这些类别的材料模型铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
期刊最新文献
Initial Stresses in a Twisted Porous Fluid-Saturated Cylinder New Perspectives on Torsional Rigidity and Polynomial Approximations of z-bar A Morphoelastic Shell Theory of Biological Invagination in Embryos A Direct Approach to the Polar Representation of Plane Tensors The Micro-Bond Potential and Stress Tensor in Peridynamics Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1