{"title":"Anisotropic micropolar fluids subject to a uniform microtorque: the stable case","authors":"Antoine Remond-Tiedrez, Ian Tice","doi":"10.2140/apde.2024.17.41","DOIUrl":null,"url":null,"abstract":"<p>We study a three-dimensional, incompressible, viscous, micropolar fluid with anisotropic microstructure on a periodic domain. Subject to a uniform microtorque, this system admits a unique nontrivial equilibrium. We prove that when the microstructure is inertially oblate (i.e., pancake-like) this equilibrium is nonlinearly asymptotically stable. </p><p> Our proof employs a nonlinear energy method built from the natural energy dissipation structure of the problem. Numerous difficulties arise due to the dissipative-conservative structure of the problem. Indeed, the dissipation fails to be coercive over the energy, which itself is weakly coupled in the sense that, while it provides estimates for the fluid velocity and microstructure angular velocity, it only provides control of two of the six components of the microinertia tensor. To overcome these problems, our method relies on a delicate combination of two distinct tiers of energy-dissipation estimates, together with transport-like advection-rotation estimates for the microinertia. When combined with a quantitative rigidity result for the microinertia, these allow us to deduce the existence of global-in-time decaying solutions near equilibrium. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"17 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.41","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a three-dimensional, incompressible, viscous, micropolar fluid with anisotropic microstructure on a periodic domain. Subject to a uniform microtorque, this system admits a unique nontrivial equilibrium. We prove that when the microstructure is inertially oblate (i.e., pancake-like) this equilibrium is nonlinearly asymptotically stable.
Our proof employs a nonlinear energy method built from the natural energy dissipation structure of the problem. Numerous difficulties arise due to the dissipative-conservative structure of the problem. Indeed, the dissipation fails to be coercive over the energy, which itself is weakly coupled in the sense that, while it provides estimates for the fluid velocity and microstructure angular velocity, it only provides control of two of the six components of the microinertia tensor. To overcome these problems, our method relies on a delicate combination of two distinct tiers of energy-dissipation estimates, together with transport-like advection-rotation estimates for the microinertia. When combined with a quantitative rigidity result for the microinertia, these allow us to deduce the existence of global-in-time decaying solutions near equilibrium.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.