Parchmentization process for low cost novel separator for cheese whey treatment in microbial fuel cell

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Brazilian Journal of Chemical Engineering Pub Date : 2024-02-07 DOI:10.1007/s43153-023-00433-9
{"title":"Parchmentization process for low cost novel separator for cheese whey treatment in microbial fuel cell","authors":"","doi":"10.1007/s43153-023-00433-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This study compared the performance of microbial fuel cells (MFCs) using parchment paper as a separator to a CMI7000 proton exchange membrane. The MFCs were operated in two chambers with whey solution as the substrate. Parameters such as COD removal, internal resistance, power density, current density, and Coulombic efficiency ratio (CE) were evaluated. The CMI7000 membrane exhibited the highest COD removal at 92%, while the parchment paper achieved removal percentages ranging from 72 to 91%. The internal resistance was lower for the parchment paper separator for the first run, the internal resistances were 68 Ώ and 84 Ώ for parchment paper and CMI7000, respectively. The maximum energy densities were 219 mW/m<sup>2</sup> (5.74 mA/m<sup>2</sup>) and 421 mW/m<sup>2</sup> (8.24 mA/m<sup>2</sup>) for parchment paper and CMI7000 membrane, respectively. The CE values for parchment paper were 36.32% and 33.5%, while for the CMI7000 membrane, they were 42.73% and 32.0%, for the two runs. Overall, the study demonstrated that the parchment paper separator performed reasonably well in terms of COD removal, internal resistance, energy density, and Coulombic efficiency ratio compared to the CMI7000 membrane in microbial fuel cells.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"199 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-023-00433-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study compared the performance of microbial fuel cells (MFCs) using parchment paper as a separator to a CMI7000 proton exchange membrane. The MFCs were operated in two chambers with whey solution as the substrate. Parameters such as COD removal, internal resistance, power density, current density, and Coulombic efficiency ratio (CE) were evaluated. The CMI7000 membrane exhibited the highest COD removal at 92%, while the parchment paper achieved removal percentages ranging from 72 to 91%. The internal resistance was lower for the parchment paper separator for the first run, the internal resistances were 68 Ώ and 84 Ώ for parchment paper and CMI7000, respectively. The maximum energy densities were 219 mW/m2 (5.74 mA/m2) and 421 mW/m2 (8.24 mA/m2) for parchment paper and CMI7000 membrane, respectively. The CE values for parchment paper were 36.32% and 33.5%, while for the CMI7000 membrane, they were 42.73% and 32.0%, for the two runs. Overall, the study demonstrated that the parchment paper separator performed reasonably well in terms of COD removal, internal resistance, energy density, and Coulombic efficiency ratio compared to the CMI7000 membrane in microbial fuel cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于微生物燃料电池中奶酪乳清处理的低成本新型分离器的羊皮化工艺
摘要 本研究比较了使用羊皮纸作为隔膜的微生物燃料电池(MFC)和 CMI7000 质子交换膜的性能。MFC 以乳清溶液为基质,在两个腔室中运行。对 COD 去除率、内阻、功率密度、电流密度和库仑效率比 (CE) 等参数进行了评估。CMI7000 膜的 COD 去除率最高,达到 92%,而羊皮纸的去除率则从 72% 到 91% 不等。在第一次运行中,羊皮纸分离器的内阻较低,羊皮纸和 CMI7000 的内阻分别为 68 Ώ 和 84 Ώ。羊皮纸和 CMI7000 薄膜的最大能量密度分别为 219 mW/m2(5.74 mA/m2)和 421 mW/m2(8.24 mA/m2)。羊皮纸的 CE 值分别为 36.32% 和 33.5%,而 CMI7000 膜的 CE 值分别为 42.73% 和 32.0%。总之,研究表明,与微生物燃料电池中的 CMI7000 膜相比,羊皮纸分离器在化学需氧量去除率、内阻、能量密度和库仑效率比等方面的表现都相当不错。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
期刊最新文献
C4 hydrocarbons to value-added chemicals over Keggin-type heteropolyacids: structure-properties, reaction parameters, and mechanisms Utilization of blue light-emitting diodes in Ensifer meliloti cultivation for enhanced production of antioxidant biopolymers Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models Doehlert matrix-based optimization of degradation of Rhodamine B in a swirling flow photolytic reactor operated in recirculation mode Application of DieselB10 formulations with short-chain alcohols in diesel cycle engines: phase equilibrium, physicochemical and thermodynamic properties and power curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1