David Gamarnik, Aukosh Jagannath, Alexander S. Wein
{"title":"Hardness of Random Optimization Problems for Boolean Circuits, Low-Degree Polynomials, and Langevin Dynamics","authors":"David Gamarnik, Aukosh Jagannath, Alexander S. Wein","doi":"10.1137/22m150263x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Volume 53, Issue 1, Page 1-46, February 2024. <br/> Abstract. We consider the problem of finding nearly optimal solutions of optimization problems with random objective functions. Such problems arise widely in the theory of random graphs, theoretical computer science, and statistical physics. Two concrete problems we consider are (a) optimizing the Hamiltonian of a spherical or Ising [math]-spin glass model and (b) finding a large independent set in a sparse Erdős–Rényi graph. The following families of algorithms are considered: (a) low-degree polynomials of the input—a general framework that captures many prior algorithms; (b) low-depth Boolean circuits; (c) the Langevin dynamics algorithm, a canonical Monte Carlo analogue of the gradient descent algorithm. We show that these families of algorithms cannot have high success probability. For the case of Boolean circuits, our results improve the state-of-the-art bounds known in circuit complexity theory (although we consider the search problem as opposed to the decision problem). Our proof uses the fact that these models are known to exhibit a variant of the overlap gap property (OGP) of near-optimal solutions. Specifically, for both models, every two solutions whose objectives are above a certain threshold are either close to or far from each other. The crux of our proof is that the classes of algorithms we consider exhibit a form of stability (noise-insensitivity): a small perturbation of the input induces a small perturbation of the output. We show by an interpolation argument that stable algorithms cannot overcome the OGP barrier. The stability of Langevin dynamics is an immediate consequence of the well-posedness of stochastic differential equations. The stability of low-degree polynomials and Boolean circuits is established using tools from Gaussian and Boolean analysis—namely hypercontractivity and total influence, as well as a novel lower bound for random walks avoiding certain subsets, which we expect to be of independent interest. In the case of Boolean circuits, the result also makes use of Linial–Mansour–Nisan’s classical theorem. Our techniques apply more broadly to low influence functions, and we expect that they may apply more generally.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"89 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/22m150263x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Computing, Volume 53, Issue 1, Page 1-46, February 2024. Abstract. We consider the problem of finding nearly optimal solutions of optimization problems with random objective functions. Such problems arise widely in the theory of random graphs, theoretical computer science, and statistical physics. Two concrete problems we consider are (a) optimizing the Hamiltonian of a spherical or Ising [math]-spin glass model and (b) finding a large independent set in a sparse Erdős–Rényi graph. The following families of algorithms are considered: (a) low-degree polynomials of the input—a general framework that captures many prior algorithms; (b) low-depth Boolean circuits; (c) the Langevin dynamics algorithm, a canonical Monte Carlo analogue of the gradient descent algorithm. We show that these families of algorithms cannot have high success probability. For the case of Boolean circuits, our results improve the state-of-the-art bounds known in circuit complexity theory (although we consider the search problem as opposed to the decision problem). Our proof uses the fact that these models are known to exhibit a variant of the overlap gap property (OGP) of near-optimal solutions. Specifically, for both models, every two solutions whose objectives are above a certain threshold are either close to or far from each other. The crux of our proof is that the classes of algorithms we consider exhibit a form of stability (noise-insensitivity): a small perturbation of the input induces a small perturbation of the output. We show by an interpolation argument that stable algorithms cannot overcome the OGP barrier. The stability of Langevin dynamics is an immediate consequence of the well-posedness of stochastic differential equations. The stability of low-degree polynomials and Boolean circuits is established using tools from Gaussian and Boolean analysis—namely hypercontractivity and total influence, as well as a novel lower bound for random walks avoiding certain subsets, which we expect to be of independent interest. In the case of Boolean circuits, the result also makes use of Linial–Mansour–Nisan’s classical theorem. Our techniques apply more broadly to low influence functions, and we expect that they may apply more generally.
期刊介绍:
The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.