Peculiarities of Long-term Phases of the Increased and Decreased Don and Lena Runoff in the 19th–21st Centuries

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-15 DOI:10.3103/s1068373923120075
A. G. Georgiadi, I. P. Milyukova
{"title":"Peculiarities of Long-term Phases of the Increased and Decreased Don and Lena Runoff in the 19th–21st Centuries","authors":"A. G. Georgiadi, I. P. Milyukova","doi":"10.3103/s1068373923120075","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of studying long-term (lasting 10–15 years or more) phases of decreased and increased conditionally natural annual and seasonal runoff of the Don River near the village of Razdorskaya and the Lena River near the village of Kyusyur are considered. The retrieval of long-term water flow time series (excluding the changes that are caused by anthropogenic impacts from the observed water flow) is based on the transformation of the annual hydrograph of average daily water flow using the Kalinin–Milyukov method. The long-term phases of annual and seasonal runoff have been identified on the basis of cumulative deviation curves and criteria for statistical homogeneity of time series by their averages. For the entire period of observations on the Don (1891–2019) and the Lena (1936–2019), two cardinally different types of long-term dynamics for contrasting phases of annual and seasonal runoff that are characteristic of these rivers and common in most of Russia have been revealed. On the Lena, the phases of decreased and increased values of annual and seasonal runoff have changed quasisynchronously, whereas on the Don, the phases of annual runoff and snow melt flood runoff on the one hand and summer-autumn and winter runoff on the other hand have changed asynchronously. The main characteristics of the contrast phases have been determined.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373923120075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The results of studying long-term (lasting 10–15 years or more) phases of decreased and increased conditionally natural annual and seasonal runoff of the Don River near the village of Razdorskaya and the Lena River near the village of Kyusyur are considered. The retrieval of long-term water flow time series (excluding the changes that are caused by anthropogenic impacts from the observed water flow) is based on the transformation of the annual hydrograph of average daily water flow using the Kalinin–Milyukov method. The long-term phases of annual and seasonal runoff have been identified on the basis of cumulative deviation curves and criteria for statistical homogeneity of time series by their averages. For the entire period of observations on the Don (1891–2019) and the Lena (1936–2019), two cardinally different types of long-term dynamics for contrasting phases of annual and seasonal runoff that are characteristic of these rivers and common in most of Russia have been revealed. On the Lena, the phases of decreased and increased values of annual and seasonal runoff have changed quasisynchronously, whereas on the Don, the phases of annual runoff and snow melt flood runoff on the one hand and summer-autumn and winter runoff on the other hand have changed asynchronously. The main characteristics of the contrast phases have been determined.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
19-21 世纪顿河和勒拿河径流增减长期阶段的特殊性
摘要 对拉兹多斯卡亚村附近的顿河和库斯尤尔村附近的勒拿河长期(10-15 年或更长)有条件自然年径流和季节径流减少和增加阶段的研究结果进行了考虑。长期水流时间序列的检索(不包括观测水流中人为影响引起的变化)基于使用加里宁-米留可夫方法对日均水流的年水文图进行转换。年径流和季节径流的长期阶段是根据累积偏差曲线和时间序列平均值的统计同质性标准确定的。在对顿河(1891-2019 年)和勒拿河(1936-2019 年)的整个观测期间,发现了这两条河流所特有的、在俄罗斯大部分地区也很常见的年径流和季节径流对比阶段的两种截然不同的长期动态类型。在勒拿河上,年径流量和季节径流量的减少和增加阶段是同步变化的,而在顿河上,年径流量和融雪洪水径流量阶段与夏秋和冬季径流量阶段是不同步变化的。对比阶段的主要特征已经确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1