{"title":"The Influence of Different Factors on Physicomechanical Properties of High Entropy Alloys with fcc Lattice","authors":"","doi":"10.1007/s11003-024-00755-0","DOIUrl":null,"url":null,"abstract":"<p>The influence of electron concentration, mixing enthalpy, and dimensional mismatch on the lattice parameter, elastic modulus, and normalized hardness of fcc high-entropy alloys (HEA) is studied. The lattice parameter, which determines the elastic modulus of HEA, is influenced by both the electron concentration and the mixing enthalpy. A rectilinear dependence of the normalized hardness of these alloys on the dimensional discrepancy is established. Formulas for calculating the hardness and the elastic modulus for hard-soluble HEA with fcc lattice are proposed.</p>","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11003-024-00755-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of electron concentration, mixing enthalpy, and dimensional mismatch on the lattice parameter, elastic modulus, and normalized hardness of fcc high-entropy alloys (HEA) is studied. The lattice parameter, which determines the elastic modulus of HEA, is influenced by both the electron concentration and the mixing enthalpy. A rectilinear dependence of the normalized hardness of these alloys on the dimensional discrepancy is established. Formulas for calculating the hardness and the elastic modulus for hard-soluble HEA with fcc lattice are proposed.
期刊介绍:
Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.