{"title":"A new evolutional model for institutional field knowledge flow network","authors":"Jinzhong Guo, Kai Wang, Xueqin Liao, Xiaoling Liu","doi":"10.2478/jdis-2024-0009","DOIUrl":null,"url":null,"abstract":"Purpose This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model (IKM). The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks. Design/Methodology/Approach The IKM model enhances the preferential attachment and growth observed in scale-free BA networks, while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network. To compare its performance, the BA and DMS models are also employed for simulating the network. Pearson coefficient analysis is conducted on the simulated networks generated by the IKM, BA and DMS models, as well as on the actual network. Findings The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network. It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm. The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units. Research Limitations This study has some limitations. Firstly, it primarily focuses on the evolution of knowledge flow networks within the field of physics, neglecting other fields. Additionally, the analysis is based on a specific set of data, which may limit the generalizability of the findings. Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets. Practical Implications The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions. It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations. The model can aid in optimizing knowledge flow and enhancing collaboration within organizations. Originality/value This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks. The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions. Moreover, the model has the potential to be applied to other knowledge networks, which are formed by knowledge organizations as node units.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"51 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.2478/jdis-2024-0009","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model (IKM). The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks. Design/Methodology/Approach The IKM model enhances the preferential attachment and growth observed in scale-free BA networks, while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network. To compare its performance, the BA and DMS models are also employed for simulating the network. Pearson coefficient analysis is conducted on the simulated networks generated by the IKM, BA and DMS models, as well as on the actual network. Findings The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network. It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm. The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units. Research Limitations This study has some limitations. Firstly, it primarily focuses on the evolution of knowledge flow networks within the field of physics, neglecting other fields. Additionally, the analysis is based on a specific set of data, which may limit the generalizability of the findings. Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets. Practical Implications The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions. It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations. The model can aid in optimizing knowledge flow and enhancing collaboration within organizations. Originality/value This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks. The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions. Moreover, the model has the potential to be applied to other knowledge networks, which are formed by knowledge organizations as node units.
期刊介绍:
JDIS devotes itself to the study and application of the theories, methods, techniques, services, infrastructural facilities using big data to support knowledge discovery for decision & policy making. The basic emphasis is big data-based, analytics centered, knowledge discovery driven, and decision making supporting. The special effort is on the knowledge discovery to detect and predict structures, trends, behaviors, relations, evolutions and disruptions in research, innovation, business, politics, security, media and communications, and social development, where the big data may include metadata or full content data, text or non-textural data, structured or non-structural data, domain specific or cross-domain data, and dynamic or interactive data.
The main areas of interest are:
(1) New theories, methods, and techniques of big data based data mining, knowledge discovery, and informatics, including but not limited to scientometrics, communication analysis, social network analysis, tech & industry analysis, competitive intelligence, knowledge mapping, evidence based policy analysis, and predictive analysis.
(2) New methods, architectures, and facilities to develop or improve knowledge infrastructure capable to support knowledge organization and sophisticated analytics, including but not limited to ontology construction, knowledge organization, semantic linked data, knowledge integration and fusion, semantic retrieval, domain specific knowledge infrastructure, and semantic sciences.
(3) New mechanisms, methods, and tools to embed knowledge analytics and knowledge discovery into actual operation, service, or managerial processes, including but not limited to knowledge assisted scientific discovery, data mining driven intelligent workflows in learning, communications, and management.
Specific topic areas may include:
Knowledge organization
Knowledge discovery and data mining
Knowledge integration and fusion
Semantic Web metrics
Scientometrics
Analytic and diagnostic informetrics
Competitive intelligence
Predictive analysis
Social network analysis and metrics
Semantic and interactively analytic retrieval
Evidence-based policy analysis
Intelligent knowledge production
Knowledge-driven workflow management and decision-making
Knowledge-driven collaboration and its management
Domain knowledge infrastructure with knowledge fusion and analytics
Development of data and information services