Stochastic perturbations in the semi-Lagrangian advection algorithm of the SL-AV global atmosphere model

Pub Date : 2024-02-10 DOI:10.1515/rnam-2024-0001
Kseniya A. Alipova, Vasiliy G. Mizyak, Mikhail A. Tolstykh, Gordey S. Goyman
{"title":"Stochastic perturbations in the semi-Lagrangian advection algorithm of the SL-AV global atmosphere model","authors":"Kseniya A. Alipova, Vasiliy G. Mizyak, Mikhail A. Tolstykh, Gordey S. Goyman","doi":"10.1515/rnam-2024-0001","DOIUrl":null,"url":null,"abstract":"An algorithm for stochastic perturbation of the semi-Lagrangian trajectories is implemented in the ensemble weather prediction system based on the global atmosphere model SL-AV20 with a horizontal resolution of approximately 20 km, 51 vertical levels, and Local Ensemble Transform Kalman Filter (LETKF). The combined use of methods for stochastic perturbation of trajectories and the parameters and tendencies of subgrid-scale processes parameterizations allows to generate ensembles with a larger spread compared to ensembles without stochastic perturbations of trajectories. An improvement in probabilistic estimates of the ensemble forecasts for various variables is shown. The comparison of two versions of ensemble prediction system is presented.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2024-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An algorithm for stochastic perturbation of the semi-Lagrangian trajectories is implemented in the ensemble weather prediction system based on the global atmosphere model SL-AV20 with a horizontal resolution of approximately 20 km, 51 vertical levels, and Local Ensemble Transform Kalman Filter (LETKF). The combined use of methods for stochastic perturbation of trajectories and the parameters and tendencies of subgrid-scale processes parameterizations allows to generate ensembles with a larger spread compared to ensembles without stochastic perturbations of trajectories. An improvement in probabilistic estimates of the ensemble forecasts for various variables is shown. The comparison of two versions of ensemble prediction system is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
SL-AV 全球大气模型半拉格朗日平流算法中的随机扰动
半拉格朗日轨迹随机扰动算法是在基于全球大气模型 SL-AV20 的集合天气预报系统中实施的,该模型的水平分辨率约为 20 千米,垂直高度为 51 层,并采用了本地集合转换卡尔曼滤波器(LETKF)。结合使用轨迹随机扰动方法和子网格尺度过程参数化的参数和趋势,与没有轨迹随机扰动的集合相比,可以生成传播范围更大的集合。结果表明,对各种变量的集合预测的概率估计有所改进。对两个版本的集合预测系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1