{"title":"Sol–Gel Synthesis of Nanostructured Mesoporous Silica Powder and Thin Films","authors":"Dessie Belay Emrie","doi":"10.1155/2024/6109770","DOIUrl":null,"url":null,"abstract":"Mesoporous materials are special nanoporous materials containing well-defined mesochannels with a pore diameter between 2 and 50 nm. The high surface area, ordered structure, tunable pore size, and easiness of functionalization have made mesoporous silica powder and thin films interesting materials for a wide range of applications including drug delivery, absorption, separation, catalysis, energy conversion, and storage. The sol–gel process has emerged as a promising technique for the synthesis of nanostructured mesoporous silica materials as it provides the advantages of low-temperature processing and easy control of the synthesis parameters. Although it offers several advantages over other synthesis techniques, it also has the drawbacks of high sensitivity to processing conditions. Hence, this review paper aims to give critical insights into the sol–gel process, the chemistry of sol–gel silica, the formation mechanism of mesoporosity, and the effects of the reaction parameters. A good understanding of these phenomena is essential to better control and optimize the properties of the final material for specific needs and applications. Additionally, this review paper discusses the different methods applied to the synthesis of nanostructured ordered mesoporous thin film silica, including the Electrochemically Assisted Self-Assembly method of synthesis. The EASA method is a novel and promising technique for the synthesis of well-ordered and vertically aligned pore channels of mesoporous thin films as it is required for mass transport applications. Moreover, the effects of sol composition, pH, applied potential, and deposition time on the final thickness of the thin film are elaborated on in detail. Furthermore, this comprehensive review highlights the potential and opportunities for future research and development in the area to further advance and use its full potential advantages.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/6109770","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Mesoporous materials are special nanoporous materials containing well-defined mesochannels with a pore diameter between 2 and 50 nm. The high surface area, ordered structure, tunable pore size, and easiness of functionalization have made mesoporous silica powder and thin films interesting materials for a wide range of applications including drug delivery, absorption, separation, catalysis, energy conversion, and storage. The sol–gel process has emerged as a promising technique for the synthesis of nanostructured mesoporous silica materials as it provides the advantages of low-temperature processing and easy control of the synthesis parameters. Although it offers several advantages over other synthesis techniques, it also has the drawbacks of high sensitivity to processing conditions. Hence, this review paper aims to give critical insights into the sol–gel process, the chemistry of sol–gel silica, the formation mechanism of mesoporosity, and the effects of the reaction parameters. A good understanding of these phenomena is essential to better control and optimize the properties of the final material for specific needs and applications. Additionally, this review paper discusses the different methods applied to the synthesis of nanostructured ordered mesoporous thin film silica, including the Electrochemically Assisted Self-Assembly method of synthesis. The EASA method is a novel and promising technique for the synthesis of well-ordered and vertically aligned pore channels of mesoporous thin films as it is required for mass transport applications. Moreover, the effects of sol composition, pH, applied potential, and deposition time on the final thickness of the thin film are elaborated on in detail. Furthermore, this comprehensive review highlights the potential and opportunities for future research and development in the area to further advance and use its full potential advantages.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.