Regret analysis of an online majorized semi-proximal ADMM for online composite optimization

IF 1.8 3区 数学 Q1 Mathematics Journal of Global Optimization Pub Date : 2024-02-15 DOI:10.1007/s10898-024-01365-5
Zehao Xiao, Liwei Zhang
{"title":"Regret analysis of an online majorized semi-proximal ADMM for online composite optimization","authors":"Zehao Xiao, Liwei Zhang","doi":"10.1007/s10898-024-01365-5","DOIUrl":null,"url":null,"abstract":"<p>An online majorized semi-proximal alternating direction method of multiplier (Online-mspADMM) is proposed for a broad class of online linearly constrained composite optimization problems. A majorized technique is adopted to produce subproblems which can be easily solved. Under mild assumptions, we establish <span>\\(\\mathcal {O}(\\sqrt{N})\\)</span> objective regret and <span>\\(\\mathcal {O}(\\sqrt{N})\\)</span> constraint violation regret at round <i>N</i>. We apply the Online-mspADMM to solve different types of online regularized logistic regression problems. The numerical results on synthetic data sets verify the theoretical result about regrets.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01365-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

An online majorized semi-proximal alternating direction method of multiplier (Online-mspADMM) is proposed for a broad class of online linearly constrained composite optimization problems. A majorized technique is adopted to produce subproblems which can be easily solved. Under mild assumptions, we establish \(\mathcal {O}(\sqrt{N})\) objective regret and \(\mathcal {O}(\sqrt{N})\) constraint violation regret at round N. We apply the Online-mspADMM to solve different types of online regularized logistic regression problems. The numerical results on synthetic data sets verify the theoretical result about regrets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于在线复合优化的在线主要半近似 ADMM 的遗憾分析
针对各类在线线性约束复合优化问题,提出了一种在线大化半近似交替方向乘法(Online-mspADMM)。该方法采用大化技术来生成易于求解的子问题。在温和的假设条件下,我们在第 N 轮建立了 \(\mathcal {O}(\sqrt{N})\) 目标遗憾和 \(\mathcal {O}(\sqrt{N})\) 约束违反遗憾。在合成数据集上的数值结果验证了关于遗憾的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Global Optimization
Journal of Global Optimization 数学-应用数学
CiteScore
0.10
自引率
5.60%
发文量
137
审稿时长
6 months
期刊介绍: The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest. In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.
期刊最新文献
Smoothing penalty approach for solving second-order cone complementarity problems Aircraft conflict resolution with trajectory recovery using mixed-integer programming Improved approximation algorithms for the k-path partition problem A QoS and sustainability-driven two-stage service composition method in cloud manufacturing: combining clustering and bi-objective optimization On convergence of a q-random coordinate constrained algorithm for non-convex problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1