Unsupervised burned areas detection using multitemporal synthetic aperture radar data

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-02-01 DOI:10.1117/1.jrs.18.014513
José Victor Orlandi Simões, Rogerio Galante Negri, Felipe Nascimento Souza, Tatiana Sussel Gonçalves Mendes, Adriano Bressane
{"title":"Unsupervised burned areas detection using multitemporal synthetic aperture radar data","authors":"José Victor Orlandi Simões, Rogerio Galante Negri, Felipe Nascimento Souza, Tatiana Sussel Gonçalves Mendes, Adriano Bressane","doi":"10.1117/1.jrs.18.014513","DOIUrl":null,"url":null,"abstract":"Climate change is a critical concern that has been greatly affected by human activities, resulting in a rise in greenhouse gas emissions. Its effects have far-reaching impacts on both living and non-living components of ecosystems, leading to alarming outcomes such as a surge in the frequency and severity of fires. This paper presents a data-driven framework that unifies time series of remote sensing images, statistical modeling, and unsupervised classification for mapping fire-damaged areas. To validate the proposed methodology, multiple remote sensing images acquired by the Sentinel-1 satellite between August and October 2021 were collected and analyzed in two case studies comprising Brazilian biomes affected by burns. Our results demonstrate that the proposed approach outperforms another method evaluated in terms of precision metrics and visual adherence. Our methodology achieves the highest overall accuracy of 58.15% and the highest F1 score of 0.72, both of which are higher than the other method. These findings suggest that our approach is more effective in detecting burned areas and may have practical applications in other environmental issues such as landslides, flooding, and deforestation.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014513","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is a critical concern that has been greatly affected by human activities, resulting in a rise in greenhouse gas emissions. Its effects have far-reaching impacts on both living and non-living components of ecosystems, leading to alarming outcomes such as a surge in the frequency and severity of fires. This paper presents a data-driven framework that unifies time series of remote sensing images, statistical modeling, and unsupervised classification for mapping fire-damaged areas. To validate the proposed methodology, multiple remote sensing images acquired by the Sentinel-1 satellite between August and October 2021 were collected and analyzed in two case studies comprising Brazilian biomes affected by burns. Our results demonstrate that the proposed approach outperforms another method evaluated in terms of precision metrics and visual adherence. Our methodology achieves the highest overall accuracy of 58.15% and the highest F1 score of 0.72, both of which are higher than the other method. These findings suggest that our approach is more effective in detecting burned areas and may have practical applications in other environmental issues such as landslides, flooding, and deforestation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多时合成孔径雷达数据进行无监督烧毁区域探测
气候变化是人类活动造成温室气体排放增加的一个重大问题。气候变化对生态系统的生物和非生物组成部分都产生了深远的影响,导致火灾的频率和严重程度激增等令人担忧的后果。本文介绍了一种数据驱动框架,它将遥感图像的时间序列、统计建模和无监督分类统一起来,用于绘制火灾受损区域图。为了验证所提出的方法,我们收集了哨兵-1 号卫星在 2021 年 8 月至 10 月间获取的多幅遥感图像,并对巴西受火灾影响的两个生物群落进行了分析。结果表明,在精确度指标和视觉一致性方面,所提出的方法优于另一种评估方法。我们的方法实现了最高的 58.15% 整体准确率和最高的 0.72 F1 分数,这两个指标都高于其他方法。这些结果表明,我们的方法能更有效地检测烧毁区域,并可实际应用于其他环境问题,如山体滑坡、洪水和森林砍伐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Few-shot synthetic aperture radar object detection algorithm based on meta-learning and variational inference Object-based strategy for generating high-resolution four-dimensional thermal surface models of buildings based on integration of visible and thermal unmanned aerial vehicle imagery Frequent oversights in on-orbit modulation transfer function estimation of optical imager onboard EO satellites Comprehensive comparison of different gridded precipitation products over geographic regions of Türkiye Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1