On the integrability of spinning-body dynamics around black holes

Paul Ramond
{"title":"On the integrability of spinning-body dynamics around black holes","authors":"Paul Ramond","doi":"arxiv-2402.02670","DOIUrl":null,"url":null,"abstract":"In general relativity, the trajectory of a celestial body in a given\nspacetime is influenced by its proper rotation, or \\textit{spin}. We present a\ncovariant and physically self-consistent Hamiltonian framework to study this\nmotion, at linear order in the body's spin and in an arbitrary fixed spacetime.\nThe choice of center-of-mass and degeneracies coming from Lorentz invariance\nare treated rigorously with adapted tools from Hamiltonian mechanics. Applying\nthe formalism to a background space-time described by the Kerr metric, we prove\nthat the motion of a spinning body around a generic rotating black hole is an\n\\textit{integrable} Hamiltonian system. In particular, linear-in-spin effects\ndo not break the integrability of Kerr geodesics, and induce no \\textit{chaos}\nwithin the associated phase space. Our findings suggest a natural way to\nimprove current gravitational waveform modelling for asymmetric binary systems,\nand provide a mean to extend classical features of Kerr geodesics to\nlinear-in-spin trajectories.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.02670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In general relativity, the trajectory of a celestial body in a given spacetime is influenced by its proper rotation, or \textit{spin}. We present a covariant and physically self-consistent Hamiltonian framework to study this motion, at linear order in the body's spin and in an arbitrary fixed spacetime. The choice of center-of-mass and degeneracies coming from Lorentz invariance are treated rigorously with adapted tools from Hamiltonian mechanics. Applying the formalism to a background space-time described by the Kerr metric, we prove that the motion of a spinning body around a generic rotating black hole is an \textit{integrable} Hamiltonian system. In particular, linear-in-spin effects do not break the integrability of Kerr geodesics, and induce no \textit{chaos} within the associated phase space. Our findings suggest a natural way to improve current gravitational waveform modelling for asymmetric binary systems, and provide a mean to extend classical features of Kerr geodesics to linear-in-spin trajectories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论黑洞周围旋转体动力学的可积分性
在广义相对论中,天体在给定时空中的运动轨迹受其自转或自旋的影响。我们提出了一个不变的、物理上自洽的哈密顿框架来研究天体在任意固定时空中的自旋线阶运动。质心的选择和洛伦兹不变性带来的退行性都通过哈密顿力学的改编工具得到了严格的处理。将这一形式主义应用于克尔公设描述的背景时空,我们证明了旋转体围绕一般旋转黑洞的运动是一个textit{integrable}哈密顿系统。特别是,线性-自旋效应不会破坏克尔测地线的可整性,也不会在相关相空间中引起textit{chaos}。我们的发现为改进当前不对称双星系统的引力波形建模提供了一种自然的方法,并为把克尔大地线的经典特征扩展到线性-内旋轨迹提供了一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating solutions of the Korteweg-de Vries equation Symmetries of Toda type 3D lattices Bilinearization-reduction approach to the classical and nonlocal semi-discrete modified Korteweg-de Vries equations with nonzero backgrounds Lax representations for the three-dimensional Euler--Helmholtz equation Extended symmetry of higher Painlevé equations of even periodicity and their rational solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1