{"title":"Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems","authors":"Tiangang Cui, Gianluca Detommaso, Robert Scheichl","doi":"10.1088/1361-6420/ad1e2c","DOIUrl":null,"url":null,"abstract":"We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui <italic toggle=\"yes\">et al</italic> 2016) and the multilevel MCMC (Dodwell <italic toggle=\"yes\">et al</italic> 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic <italic toggle=\"yes\">likelihood-informed subspace</italic> (LIS) (Cui <italic toggle=\"yes\">et al</italic> 2014)—which involves a number of forward and adjoint model simulations—to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a <italic toggle=\"yes\">Rayleigh–Ritz procedure</italic> to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"69 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad1e2c","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui et al 2016) and the multilevel MCMC (Dodwell et al 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al 2014)—which involves a number of forward and adjoint model simulations—to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh–Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.