Tarsis: An effective automata-based abstract domain for string analysis

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Software-Evolution and Process Pub Date : 2024-02-14 DOI:10.1002/smr.2647
Luca Negrini, Vincenzo Arceri, Agostino Cortesi, Pietro Ferrara
{"title":"Tarsis: An effective automata-based abstract domain for string analysis","authors":"Luca Negrini,&nbsp;Vincenzo Arceri,&nbsp;Agostino Cortesi,&nbsp;Pietro Ferrara","doi":"10.1002/smr.2647","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce <span>Tarsis</span>, a new abstract domain based on the abstract interpretation theory that approximates string values through finite state automata. The main novelty of <span>Tarsis</span> is that it works over an alphabet of strings instead of single characters. On the one hand, such an approach requires a more complex and refined definition of the lattice operators and of the abstract semantics of string operators. On the other hand, it is in position to obtain strictly more precise results than state-of-the-art approaches. We compare <span>Tarsis</span> both with simpler domains and with the standard automata model, targeting case studies containing standard yet challenging string manipulations. The performance gain w.r.t. the standard automata model is also assessed, measuring the speed-up gained by <span>Tarsis</span>. Experiments confirm that <span>Tarsis</span> can obtain precise results without incurring in excessive computational costs.</p>","PeriodicalId":48898,"journal":{"name":"Journal of Software-Evolution and Process","volume":"36 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smr.2647","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software-Evolution and Process","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smr.2647","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce Tarsis, a new abstract domain based on the abstract interpretation theory that approximates string values through finite state automata. The main novelty of Tarsis is that it works over an alphabet of strings instead of single characters. On the one hand, such an approach requires a more complex and refined definition of the lattice operators and of the abstract semantics of string operators. On the other hand, it is in position to obtain strictly more precise results than state-of-the-art approaches. We compare Tarsis both with simpler domains and with the standard automata model, targeting case studies containing standard yet challenging string manipulations. The performance gain w.r.t. the standard automata model is also assessed, measuring the speed-up gained by Tarsis. Experiments confirm that Tarsis can obtain precise results without incurring in excessive computational costs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tarsis:基于自动机的有效字符串分析抽象域
本文介绍了基于抽象解释理论的新抽象域 Tarsis,它通过有限状态自动机逼近字符串值。Tarsis 的主要新颖之处在于它适用于字符串字母表而非单个字符。一方面,这种方法需要对网格算子和字符串算子的抽象语义进行更复杂、更精细的定义。另一方面,它能获得比最先进方法更精确的结果。我们将 Tarsis 与更简单的域和标准自动机模型进行了比较,并针对包含标准但具有挑战性的字符串操作的案例进行了研究。我们还评估了与标准自动机模型相比的性能增益,衡量了 Tarsis 所带来的速度提升。实验证实,Tarsis 可以获得精确的结果,而不会产生过高的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Software-Evolution and Process
Journal of Software-Evolution and Process COMPUTER SCIENCE, SOFTWARE ENGINEERING-
自引率
10.00%
发文量
109
期刊最新文献
Issue Information Issue Information A hybrid‐ensemble model for software defect prediction for balanced and imbalanced datasets using AI‐based techniques with feature preservation: SMERKP‐XGB Issue Information LLMs for science: Usage for code generation and data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1