Intricate Spatiotemporal Dependency Learning for Temporal Knowledge Graph Reasoning

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Knowledge Discovery from Data Pub Date : 2024-02-16 DOI:10.1145/3648366
Xuefei Li, Huiwei Zhou, Weihong Yao, Wenchu Li, Baojie Liu, Yingyu Lin
{"title":"Intricate Spatiotemporal Dependency Learning for Temporal Knowledge Graph Reasoning","authors":"Xuefei Li, Huiwei Zhou, Weihong Yao, Wenchu Li, Baojie Liu, Yingyu Lin","doi":"10.1145/3648366","DOIUrl":null,"url":null,"abstract":"<p>Knowledge Graph (KG) reasoning has been an interesting topic in recent decades. Most current researches focus on predicting the missing facts for incomplete KG. Nevertheless, Temporal KG (TKG) reasoning, which is to forecast the future facts, still faces with the dilemma due to the complex interactions between entities over time. This paper proposes a novel intricate Spatiotemporal Dependency learning Network (STDN) based on Graph Convolutional Network (GCN) to capture the underlying correlations of an entity at different timestamps. Specifically, we first learn an adaptive adjacency matrix to depict the direct dependencies from the temporally adjacent facts of an entity, obtaining its previous context embedding. Then, a Spatiotemporal feature Encoding GCN (STE-GCN) is proposed to capture the latent spatiotemporal dependencies of the entity, getting the spatiotemporal embedding. Finally, a time gate unit is used to integrate the previous context embedding and the spatiotemporal embedding at the current timestamp to update the entity evolutional embedding for predicting future facts. STDN could generate the more expressive embeddings for capturing the intricate spatiotemporal dependencies in TKG. Extensive experiments on WIKI, ICEWS14 and ICEWS18 datasets prove our STDN has the advantage over state-of-the-art baselines for the temporal reasoning task.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648366","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge Graph (KG) reasoning has been an interesting topic in recent decades. Most current researches focus on predicting the missing facts for incomplete KG. Nevertheless, Temporal KG (TKG) reasoning, which is to forecast the future facts, still faces with the dilemma due to the complex interactions between entities over time. This paper proposes a novel intricate Spatiotemporal Dependency learning Network (STDN) based on Graph Convolutional Network (GCN) to capture the underlying correlations of an entity at different timestamps. Specifically, we first learn an adaptive adjacency matrix to depict the direct dependencies from the temporally adjacent facts of an entity, obtaining its previous context embedding. Then, a Spatiotemporal feature Encoding GCN (STE-GCN) is proposed to capture the latent spatiotemporal dependencies of the entity, getting the spatiotemporal embedding. Finally, a time gate unit is used to integrate the previous context embedding and the spatiotemporal embedding at the current timestamp to update the entity evolutional embedding for predicting future facts. STDN could generate the more expressive embeddings for capturing the intricate spatiotemporal dependencies in TKG. Extensive experiments on WIKI, ICEWS14 and ICEWS18 datasets prove our STDN has the advantage over state-of-the-art baselines for the temporal reasoning task.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于时态知识图谱推理的复杂时空依赖性学习
近几十年来,知识图谱(KG)推理一直是一个有趣的话题。目前,大多数研究都侧重于预测不完整知识图谱中缺失的事实。然而,用于预测未来事实的时态知识图谱(TKG)推理仍然面临着实体间随时间发生复杂交互的难题。本文基于图卷积网络(Graph Convolutional Network,GCN)提出了一种新颖复杂的时空依赖学习网络(Spatotemporal Dependency learning Network,STDN),以捕捉实体在不同时间戳下的潜在相关性。具体来说,我们首先学习一个自适应邻接矩阵,以描述一个实体在时间上相邻的事实的直接依赖关系,从而获得其先前的上下文嵌入。然后,提出一个时空特征编码 GCN(STE-GCN)来捕捉实体的潜在时空依赖关系,从而得到时空嵌入。最后,使用时间门单元整合之前的上下文嵌入和当前时间戳的时空嵌入,以更新实体演化嵌入,从而预测未来事实。STDN 可以生成更具表现力的嵌入,以捕捉 TKG 中错综复杂的时空依赖关系。在 WIKI、ICEWS14 和 ICEWS18 数据集上进行的大量实验证明,在时间推理任务中,我们的 STDN 比最先进的基线算法更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
期刊最新文献
Structural properties on scale-free tree network with an ultra-large diameter Learning Individual Treatment Effects under Heterogeneous Interference in Networks Deconfounding User Preference in Recommendation Systems through Implicit and Explicit Feedback Interdisciplinary Fairness in Imbalanced Research Proposal Topic Inference: A Hierarchical Transformer-based Method with Selective Interpolation A Compact Vulnerability Knowledge Graph for Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1