Local Walsh-average-based Estimation and Variable Selection for Spatial Single-index Autoregressive Models

{"title":"Local Walsh-average-based Estimation and Variable Selection for Spatial Single-index Autoregressive Models","authors":"","doi":"10.1007/s11067-024-09616-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper is concerned with spatial single-index autoregressive model (SSIM), where the spatial lag effect enters the model linearly and the relationship between variables is a nonparametric function of a linear combination of multivariate regressors. It addresses challenges related to the curse of dimensionality and interactions among non-independent variables in spatial data. The local Walsh-average regression has proven to be a robust and efficient method for handling single-index models. We extend this approach to the spatial domain, propose a regularized local Walsh-average (RLWA) estimation strategy where the nonparametric component is established by a local Walsh-average approach and the estimation of the parametric part by Walsh-average method. Under specific assumptions, we establish the asymptotic properties of both parametric and nonparametric partial estimators. Additionally, we propose a robust shrinkage method termed regularized local Walsh-average (RLWA) that can construct robust parametric variable selection and robust nonparametric component estimation simultaneously. Theoretical analysis reveals RLWA works beautifully, including consistency in variable selection and oracle property in estimation. We propose a parameter selection process based on a robust BIC-type approach with an oracle property. The effectiveness of the proposed estimation procedure is evaluated through three Monte Carlo simulations and real data applications, demonstrating its performance in finite samples.</p>","PeriodicalId":501141,"journal":{"name":"Networks and Spatial Economics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Spatial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11067-024-09616-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with spatial single-index autoregressive model (SSIM), where the spatial lag effect enters the model linearly and the relationship between variables is a nonparametric function of a linear combination of multivariate regressors. It addresses challenges related to the curse of dimensionality and interactions among non-independent variables in spatial data. The local Walsh-average regression has proven to be a robust and efficient method for handling single-index models. We extend this approach to the spatial domain, propose a regularized local Walsh-average (RLWA) estimation strategy where the nonparametric component is established by a local Walsh-average approach and the estimation of the parametric part by Walsh-average method. Under specific assumptions, we establish the asymptotic properties of both parametric and nonparametric partial estimators. Additionally, we propose a robust shrinkage method termed regularized local Walsh-average (RLWA) that can construct robust parametric variable selection and robust nonparametric component estimation simultaneously. Theoretical analysis reveals RLWA works beautifully, including consistency in variable selection and oracle property in estimation. We propose a parameter selection process based on a robust BIC-type approach with an oracle property. The effectiveness of the proposed estimation procedure is evaluated through three Monte Carlo simulations and real data applications, demonstrating its performance in finite samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部沃尔什平均值的空间单指数自回归模型估计与变量选择
摘要 本文涉及空间单指数自回归模型(SSIM),其中空间滞后效应以线性方式进入模型,变量之间的关系是多元回归因子线性组合的非参数函数。它解决了与空间数据中的维度诅咒和非独立变量之间的交互作用有关的难题。事实证明,局部沃尔什平均回归是处理单指标模型的一种稳健高效的方法。我们将这种方法扩展到空间领域,提出了正则化局部沃尔什平均(RLWA)估计策略,其中非参数部分由局部沃尔什平均方法建立,参数部分由沃尔什平均方法估计。在特定假设条件下,我们建立了参数和非参数部分估计器的渐近特性。此外,我们还提出了一种称为正则化局部沃尔什平均法(RLWA)的稳健收缩方法,可以同时构建稳健的参数变量选择和稳健的非参数部分估计。理论分析表明,RLWA 运行良好,包括变量选择的一致性和估计的甲骨文特性。我们提出了一种基于稳健 BIC 类型方法的参数选择过程,该方法具有甲骨文特性。我们通过三次蒙特卡罗模拟和实际数据应用评估了所提出的估计程序的有效性,证明了它在有限样本中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meal Delivery Routing Problem with Stochastic Meal Preparation Times and Customer Locations Dynamic Pricing Analysis under Demand-Supply Equilibrium of Autonomous-Mobility-on-Demand Services From traditional to digital servicification: Chinese services in European manufacturing Fulfillment Center Location and Network Design in Dual-Channel Retailing Node Coincidence in Metric Minimum Weighted Length Graph Embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1