Prediction of hippocampal electric field in time series induced by TI-DMS with temporal convolutional network

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2024-02-11 DOI:10.1007/s11571-024-10067-3
Xiangyang Xu, Bin Deng, Jiang Wang, Guosheng Yi
{"title":"Prediction of hippocampal electric field in time series induced by TI-DMS with temporal convolutional network","authors":"Xiangyang Xu, Bin Deng, Jiang Wang, Guosheng Yi","doi":"10.1007/s11571-024-10067-3","DOIUrl":null,"url":null,"abstract":"<p>Temporal interference deep-brain magnetic stimulation (TI-DMS) induces rhythmic electric field (EF) in the hippocampus to normalize cognitive function. The rhythmic time series of the hippocampal EF is essential for the assessment of TI-DMS. However, the finite element method (FEM) takes several hours to obtain the time series of EF. In order to reduce the time cost, the temporal convolutional network (TCN) model is adopted to predict the time series of hippocampal EF induced by TI-DMS. It takes coil configuration and loaded current as input and predicts the time series of maximum and mean values of the left and right hippocampal EF. The prediction takes only a few seconds. The model parameter combination of kernel size and layers is selected optimally by cross-validation method. The experimental results for multiple subjects show that the R<sup>2</sup> of all the time series predicted by the model exceed 0.98. And the prediction accuracy is even higher as the input parameters approach the training set. These results demonstrate that the adopted model can quickly predict the time series of hippocampal EF induced by TI-DMS with relatively high accuracy, which is beneficial for future clinical applications.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10067-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal interference deep-brain magnetic stimulation (TI-DMS) induces rhythmic electric field (EF) in the hippocampus to normalize cognitive function. The rhythmic time series of the hippocampal EF is essential for the assessment of TI-DMS. However, the finite element method (FEM) takes several hours to obtain the time series of EF. In order to reduce the time cost, the temporal convolutional network (TCN) model is adopted to predict the time series of hippocampal EF induced by TI-DMS. It takes coil configuration and loaded current as input and predicts the time series of maximum and mean values of the left and right hippocampal EF. The prediction takes only a few seconds. The model parameter combination of kernel size and layers is selected optimally by cross-validation method. The experimental results for multiple subjects show that the R2 of all the time series predicted by the model exceed 0.98. And the prediction accuracy is even higher as the input parameters approach the training set. These results demonstrate that the adopted model can quickly predict the time series of hippocampal EF induced by TI-DMS with relatively high accuracy, which is beneficial for future clinical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用时序卷积网络预测 TI-DMS 诱导的时间序列中的海马电场
颞叶干扰深脑磁波刺激(TI-DMS)可诱导海马体产生有节奏的电场(EF),从而使认知功能恢复正常。海马EF的节律时间序列对TI-DMS的评估至关重要。然而,有限元法(FEM)需要几个小时才能获得 EF 的时间序列。为了减少时间成本,我们采用了时序卷积网络(TCN)模型来预测 TI-DMS 诱导的海马 EF 时间序列。它将线圈配置和加载电流作为输入,预测左右海马 EF 最大值和平均值的时间序列。预测只需几秒钟。核大小和层数的模型参数组合是通过交叉验证法优化选择的。多个受试者的实验结果表明,该模型预测的所有时间序列的 R2 都超过了 0.98。当输入参数接近训练集时,预测精度更高。这些结果表明,所采用的模型能以较高的准确率快速预测 TI-DMS 所诱发的海马 EF 时间序列,有利于未来的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
A memristor-based circuit design of avoidance learning with time delay and its application Perceptual information processing in table tennis players: based on top-down hierarchical predictive coding EEG-based deception detection using weighted dual perspective visibility graph analysis The dynamical behavior effects of different numbers of discrete memristive synaptic coupled neurons Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1