Güzin Bayraksan, Francesca Maggioni, Daniel Faccini, Ming Yang
{"title":"Bounds for Multistage Mixed-Integer Distributionally Robust Optimization","authors":"Güzin Bayraksan, Francesca Maggioni, Daniel Faccini, Ming Yang","doi":"10.1137/22m147178x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 682-717, March 2024. <br/> Abstract. Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain close to nominal conditional distributions according to some measure of similarity/distance (e.g., [math]-divergences or Wasserstein distance). In this paper, new bounding criteria for this class of difficult decision problems are provided through scenario grouping using the ambiguity sets associated with various commonly used [math]-divergences and the Wasserstein distance. Our approach does not require any special problem structure such as linearity, convexity, stagewise independence, and so forth. Therefore, while we focus on multistage mixed-integer DRO, our bounds can be applied to a wide range of DRO problems including two-stage and multistage, with or without integer variables, convex or nonconvex, and nested or nonnested formulations. Numerical results on a multistage mixed-integer production problem show the efficiency of the proposed approach through different choices of partition strategies, ambiguity sets, and levels of robustness.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m147178x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 1, Page 682-717, March 2024. Abstract. Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain close to nominal conditional distributions according to some measure of similarity/distance (e.g., [math]-divergences or Wasserstein distance). In this paper, new bounding criteria for this class of difficult decision problems are provided through scenario grouping using the ambiguity sets associated with various commonly used [math]-divergences and the Wasserstein distance. Our approach does not require any special problem structure such as linearity, convexity, stagewise independence, and so forth. Therefore, while we focus on multistage mixed-integer DRO, our bounds can be applied to a wide range of DRO problems including two-stage and multistage, with or without integer variables, convex or nonconvex, and nested or nonnested formulations. Numerical results on a multistage mixed-integer production problem show the efficiency of the proposed approach through different choices of partition strategies, ambiguity sets, and levels of robustness.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.