A Riemannian Proximal Newton Method

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-02-09 DOI:10.1137/23m1565097
Wutao Si, P.-A. Absil, Wen Huang, Rujun Jiang, Simon Vary
{"title":"A Riemannian Proximal Newton Method","authors":"Wutao Si, P.-A. Absil, Wen Huang, Rujun Jiang, Simon Vary","doi":"10.1137/23m1565097","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 654-681, March 2024. <br/> Abstract. In recent years, the proximal gradient method and its variants have been generalized to Riemannian manifolds for solving optimization problems with an additively separable structure, i.e., [math], where [math] is continuously differentiable, and [math] may be nonsmooth but convex with computationally reasonable proximal mapping. In this paper, we generalize the proximal Newton method to embedded submanifolds for solving the type of problem with [math]. The generalization relies on the Weingarten and semismooth analysis. It is shown that the Riemannian proximal Newton method has a local superlinear convergence rate under certain reasonable assumptions. Moreover, a hybrid version is given by concatenating a Riemannian proximal gradient method and the Riemannian proximal Newton method. It is shown that if the switch parameter is chosen appropriately, then the hybrid method converges globally and also has a local superlinear convergence rate. Numerical experiments on random and synthetic data are used to demonstrate the performance of the proposed methods.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1565097","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 1, Page 654-681, March 2024.
Abstract. In recent years, the proximal gradient method and its variants have been generalized to Riemannian manifolds for solving optimization problems with an additively separable structure, i.e., [math], where [math] is continuously differentiable, and [math] may be nonsmooth but convex with computationally reasonable proximal mapping. In this paper, we generalize the proximal Newton method to embedded submanifolds for solving the type of problem with [math]. The generalization relies on the Weingarten and semismooth analysis. It is shown that the Riemannian proximal Newton method has a local superlinear convergence rate under certain reasonable assumptions. Moreover, a hybrid version is given by concatenating a Riemannian proximal gradient method and the Riemannian proximal Newton method. It is shown that if the switch parameter is chosen appropriately, then the hybrid method converges globally and also has a local superlinear convergence rate. Numerical experiments on random and synthetic data are used to demonstrate the performance of the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黎曼近端牛顿法
SIAM 优化期刊》,第 34 卷第 1 期,第 654-681 页,2024 年 3 月。 摘要近年来,近似梯度法及其变体被推广到黎曼流形上,用于求解具有可加分离结构的优化问题,即[math],其中[math]是连续可微分的,[math]可能是非光滑的,但具有计算上合理的近似映射的凸问题。在本文中,我们将近似牛顿法推广到嵌入子曼形上,以解决[math]类型的问题。该方法的推广依赖于魏因加顿和半光滑分析。研究表明,在某些合理的假设条件下,黎曼近似牛顿法具有局部超线性收敛率。此外,通过将黎曼近似梯度法和黎曼近似牛顿法结合起来,给出了一个混合版本。结果表明,如果开关参数选择得当,那么混合方法在全局上收敛,并且具有局部超线性收敛率。随机数据和合成数据的数值实验证明了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1