{"title":"Electrochemical migration behavior between Cu and Ag under a thin electrolyte layer containing chloride","authors":"Lu Luo, Kang Qi, Hualiang Huang","doi":"10.1108/acmm-11-2023-2924","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag under an NaCl thin electrolyte layer (TEL).</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A self-made experimental setup for the ECM behavior between Cu and Ag was designed. An HD video measurement microscopy was used to observe the typical dendrite/corrosion morphology and pH distribution. Short-circuit time (SCT), short-circuit current density and the influence of the galvanic effect between Cu and Ag on their ECM behavior were studied by electrochemical tests. The surface morphology and composition of dendrite were characterized by FESEM/EDS.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The SCT increased with increasing NaCl concentration but decreased with increasing applied bias voltage, and the SCT between Cu and Ag was less than that between Cu and Cu because their galvanic effect accelerated the dissolution and migration of Cu. When NaCl concentration was less than or equal to 6 mmol/L, cedar-like dendrite was formed, whereas no dendrite formed and only precipitation occurred at high chloride ion concentration (100 mmol/L). The composition of the dendrite between Cu and Ag was copper.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>The significance of this study is to clarify the ECM failure mechanism of printed circuit board (PCB) with an immersion silver surface finish (PCB-ImAg).</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>This study provides a basic theoretical basis for the selection of protective measures and metal coatings for PCB.</p><!--/ Abstract__block -->\n<h3>Social implications</h3>\n<p>The social implication of this study is to predict the service life of PCB.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The ECM behavior of dissimilar metals under a TEL was investigated, the influence of the galvanic effect between them on their ECM was discussed, and the SCT increased with increasing NaCl concentration.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"115 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-11-2023-2924","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag under an NaCl thin electrolyte layer (TEL).
Design/methodology/approach
A self-made experimental setup for the ECM behavior between Cu and Ag was designed. An HD video measurement microscopy was used to observe the typical dendrite/corrosion morphology and pH distribution. Short-circuit time (SCT), short-circuit current density and the influence of the galvanic effect between Cu and Ag on their ECM behavior were studied by electrochemical tests. The surface morphology and composition of dendrite were characterized by FESEM/EDS.
Findings
The SCT increased with increasing NaCl concentration but decreased with increasing applied bias voltage, and the SCT between Cu and Ag was less than that between Cu and Cu because their galvanic effect accelerated the dissolution and migration of Cu. When NaCl concentration was less than or equal to 6 mmol/L, cedar-like dendrite was formed, whereas no dendrite formed and only precipitation occurred at high chloride ion concentration (100 mmol/L). The composition of the dendrite between Cu and Ag was copper.
Research limitations/implications
The significance of this study is to clarify the ECM failure mechanism of printed circuit board (PCB) with an immersion silver surface finish (PCB-ImAg).
Practical implications
This study provides a basic theoretical basis for the selection of protective measures and metal coatings for PCB.
Social implications
The social implication of this study is to predict the service life of PCB.
Originality/value
The ECM behavior of dissimilar metals under a TEL was investigated, the influence of the galvanic effect between them on their ECM was discussed, and the SCT increased with increasing NaCl concentration.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.