Saira Prasanth, Nire Oloyede, Xuezhixing Zhang, Kai Chen, Daniel Carrión
{"title":"Simulating desegregation through affordable housing development: an environmental health impact assessment of Connecticut zoning law","authors":"Saira Prasanth, Nire Oloyede, Xuezhixing Zhang, Kai Chen, Daniel Carrión","doi":"10.1101/2024.02.13.24302645","DOIUrl":null,"url":null,"abstract":"Residential segregation shapes access to health-promoting resources and drives health inequities in the United States. Connecticut Section 8-30g incentivizes municipalities to develop a housing stock that is at least 10% affordable housing. We used this implicit target to project the impact of increasing affordable housing across all 169 Connecticut municipalities on all-cause mortality among low-income residents. We modeled six ambient environmental exposures: fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), summertime daily maximum heat index, greenness, and road traffic noise. We allocated new affordable housing to reach the 10% target in each town and simulated random movement of low-income households into new units using an inverse distance weighting penalty. We then quantified exposure changes and used established exposure-response functions to estimate deaths averted stratified by four ethnoracial groups: Asian, Hispanic or Latino, non-Hispanic Black, and non-Hispanic White. We quantified racialized segregation by computing a multi-group index of dissimilarity at baseline and post-simulation. Across 1,000 simulations, in one year (2019) we found on average 169 (95% CI: 84, 255) deaths averted from changes in greenness, 71 (95% CI: 49, 94) deaths averted from NO2, 9 (95% CI: 4, 14) deaths averted from noise, and marginal impacts from other exposures, with the highest rates of deaths averted observed among non-Hispanic Black and non-Hispanic White residents. Multi-group index of dissimilarity declined on average in all eight Connecticut counties post-simulation. Sensitivity analyses simulating a different population movement strategy and modeling a different year (2018) yielded consistent results. Strengthening desegregation policy may reduce deaths from environmental exposures among low-income residents. Further research should explore non-mortality impacts and additional mechanisms by which desegregation may advance health equity.","PeriodicalId":501555,"journal":{"name":"medRxiv - Occupational and Environmental Health","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Occupational and Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.02.13.24302645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Residential segregation shapes access to health-promoting resources and drives health inequities in the United States. Connecticut Section 8-30g incentivizes municipalities to develop a housing stock that is at least 10% affordable housing. We used this implicit target to project the impact of increasing affordable housing across all 169 Connecticut municipalities on all-cause mortality among low-income residents. We modeled six ambient environmental exposures: fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), summertime daily maximum heat index, greenness, and road traffic noise. We allocated new affordable housing to reach the 10% target in each town and simulated random movement of low-income households into new units using an inverse distance weighting penalty. We then quantified exposure changes and used established exposure-response functions to estimate deaths averted stratified by four ethnoracial groups: Asian, Hispanic or Latino, non-Hispanic Black, and non-Hispanic White. We quantified racialized segregation by computing a multi-group index of dissimilarity at baseline and post-simulation. Across 1,000 simulations, in one year (2019) we found on average 169 (95% CI: 84, 255) deaths averted from changes in greenness, 71 (95% CI: 49, 94) deaths averted from NO2, 9 (95% CI: 4, 14) deaths averted from noise, and marginal impacts from other exposures, with the highest rates of deaths averted observed among non-Hispanic Black and non-Hispanic White residents. Multi-group index of dissimilarity declined on average in all eight Connecticut counties post-simulation. Sensitivity analyses simulating a different population movement strategy and modeling a different year (2018) yielded consistent results. Strengthening desegregation policy may reduce deaths from environmental exposures among low-income residents. Further research should explore non-mortality impacts and additional mechanisms by which desegregation may advance health equity.